Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/12810
Заглавие документа: Representations of affine multifunctions by affine selections
Авторы: Gorokhovik, V. V.
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Дата публикации: 2008
Библиографическое описание источника: Set-valued analysis. V. 16, No. 2-3. P. 185–198.
Аннотация: The paper deals with affine selections of affine (both convex and concave) multifunctions acting between finite-dimensional real normed spaces. It is proved that each affine multifunction with compact values possesses an exhaustive family of affine selections and, consequently, can be represented by its affine selections. Moreover, a convex multifunction with compact values possesses an exhaustive family of affine selections if and only if it is affine. Thus the existence of an exhaustive family of affine selections is the characteristic feature of affine multifunctions which distinguishes them from other convex multifunctions with compact values. Besides, a necessary and sufficient condition for a concave multifunction to be affine on a given convex subset is also proved. Finally it is shown that each affine multifunction with compact values can be represented as the closed convex hull of its exposed affine selections and as the convex hull of its extreme affine selections. These statements extend the Straszewicz theorem and the Krein-Milman theorem to affine multifunctions.
URI документа: http://elib.bsu.by/handle/123456789/12810
ISSN: 0927-6947
1572-932X
Финансовая поддержка: National Program of Fundamental Researchs of Belarus under grant “Mathematical Models—16”.
Располагается в коллекциях:Архив статей механико-математического факультета до 2016 г.

Полный текст документа:
Файл Описание РазмерФормат 
Gorokhovik V.V. Representations of Affine Multifunctions by Affine Selections Set-Valued Anal (2008) V. 16 P. 185–198.pdf414,6 kBAdobe PDFОткрыть
Показать полное описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.