Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/12781
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorBakhtin, V. I.-
dc.date.accessioned2012-06-16T09:49:19Z-
dc.date.available2012-06-16T09:49:19Z-
dc.date.issued2004-
dc.identifier.citationProceedings of the Steklov Institute of Mathematics, Vol. 244, 2004, pp. 58–79.ru
dc.identifier.urihttp://elib.bsu.by/handle/123456789/12781-
dc.descriptionTranslated from Trudy Matematicheskogo Instituta imeni V.A. Steklova, Vol. 244, 2004, pp. 65–86.ru
dc.description.abstractA dynamical system $w'=S(w,z,ε)$, $z'=z+εv(w,z,ε)$ is considered. It is assumed that slow motions are determined by the vector field $v(w, z, ε)$ in the Euclidean space and fast motions occur in a neighborhood of a topologically mixing hyperbolic attractor. For the difference between the true and averaged slow motions, a limit theorem is proved and sharp asymptotics for the probabilities of large deviations (that do not exceed $ε^δ$) are calculated; the exponent $δ$ depends on the smoothness of the system and approaches zero as the smoothness increases.ru
dc.language.isoenru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.titleCramer Asymptotics in the Averaging Method for Systems with Fast Hyperbolic Motionsru
dc.typeconference paperru
Располагается в коллекциях:Архив статей механико-математического факультета до 2016 г.

Полный текст документа:
Файл Описание РазмерФормат 
50. Cramer asymptotics .pdf316,77 kBAdobe PDFОткрыть
Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.