Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: https://elib.bsu.by/handle/123456789/10863
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorПекарский, Александр Антонович-
dc.date.accessioned2012-06-03T09:21:05Z-
dc.date.available2012-06-03T09:21:05Z-
dc.date.issued2004-
dc.identifier.citationАлгебра и анализ. - 2004. - Т.16, № 3. - С. 143–170ru
dc.identifier.urihttp://elib.bsu.by/handle/123456789/10863-
dc.description.abstractПусть $S$ – простая или замкнутая кривая М. А. Лаврентьева в комплексной плоскости, $0<p<1$, причем $1/p\notin\mathbb{N}$ и $s\in\mathbb{N}$. Показано, что для любой рациональной функции $r$ степени $n$, для которой $\vert r\vert^p$ суммируема на $S$, выполняется неравенство $\displaystyle \biggl(\int_S\vert r^{(s)}(z)\vert^\sigma\vert dz\vert\biggr)^{1/\sigma}\leq cn^s\biggl(\int_S\vert r(z)\vert^p\vert dz\vert\biggr)^{1/p}, $ где $1/\sigma=s+1/p$, а $c>0$ зависит лишь от $S$, $p$, $s$. Ранее (1995 г.) этот результат был получен автором и Г. Шталем для отрезка и окружности. Данное неравенство применяется для доказательства обратной теоремы рациональной аппроксимации в пространстве В. И. Смирнова $E_p$. В работах рассматриваются также другие задачи рациональной аппроксимации в пространствах $L_p$ и $E_p$. рациональные функции, неравенства типа Бернштейна, пространства Смирнова.ru
dc.language.isoruru
dc.subjectЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математикаru
dc.titleА. А. Пекарский, Неравенства типа Бернштейна для производных рациональных функций в пространствах Lp, 0<p<1, на кривых Лаврентьеваru
dc.typearticleru
Располагается в коллекциях:Архив статей механико-математического факультета до 2016 г.

Показать базовое описание документа Статистика Google Scholar



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.