ARTICLE IN PRESS

Available online at www.sciencedirect.com

SCIENCE DIRECT.

Sensors and Actuators B 7031 (2003) 1-9

www.elsevier.com/locate/sensorb

Gas-sensitive properties of thin film heterojunction structures based on Fe₂O₃–In₂O₃ nanocomposites

M. Ivanovskaya^{a,*}, D. Kotsikau^a, G. Faglia^b, P. Nelli^c, S. Irkaev^d

^aScientific Research Institute for Physical and Chemical Problems of Belarus State University,
Leningradskaya St. 14, 220050 Minsk, Belarus

^bINFM-Gas Sensors Laboratory, University of Brescia, Via Valotti 9, 25133 Brescia, Italy

^cDepartment of Engineering, University of Bergamo, viale Marconi, 5 24044 Dalmine (BG), Italy

^dRussian Academy of Science, Institute for Analytical Instrumentation, Ryzhskii Av. 26, 198103

St. Petersburg, Russia

Abstract

This paper reports an investigation of the gas-sensitive properties of thin film sensors based on the double-layers $Fe_2O_3-In_2O_3$ and $Fe_2O_3-In_2O_3/In_2O_3$ towards gases of different chemical nature (C_2H_5OH , CH_4 , CO, NH_3 , NO_2 , O_3). As it was found, the γ -Fe $_2O_3-In_2O_3$ composite (Fe:In = 9:1, mol) is more sensitive to O_3 ; on the contrary, the α -Fe $_2O_3-In_2O_3$ (9:1) system, possesses a higher sensitivity to NO_2 . The optimal temperature for detecting of both gases is in the range of $70-100~^{\circ}C$. Sensors based on the γ -Fe $_2O_3-In_2O_3$ heterostructure show the maximum response to C_2H_5OH at considerably higher temperatures (250–300 $^{\circ}C$), but this layer is practically insensitive to other reducing gases like CH_4 , CO and NH_3 in the same temperature range.

An explanation of the different gas-sensitive behavior for the these samples resulted from the particular features of their structure and phase state.

© 2003 Published by Elsevier Science B.V.

Keywords: Gas sensor; Oxide heterojunction; Fe₂O₃; In₂O₃; Nanosized composite

1. Introduction

The existing literature reports that the sensitivity of ceramic sensors based on Fe_2O_3 layers to reducing gases is rather low [1–3]. However, the doping of Fe_2O_3 with quadrivalent metal ions (Sn, Ti, Zr) as well as the modification of this material with SO_4^{2-} ions can significantly enhance the gas-sensitive properties of the corresponding sensors towards ethanol and hydrocarbons [3]. In particular, the addition of Fe_2O_3 to SnO_2 thick films leads to an increasing response to ethanol [4]. There are also some papers concerning the effect of Fe_2O_3 additives on the properties of In_2O_3 based sensors; for example, the sputtering of a Fe_2O_3 layer over In_2O_3 thin film increases its sensitivity to O_3 and reduces the optimal operating temperature [5].

E-mail address: ivanovskaya@bsu.by (M. Ivanovskaya).

A considerable improvement of In_2O_3 thin film sensors with respect to O_3 by doping with $\gamma\text{-Fe}_2O_3$ is reported by Gutman et al. [6]; the influence of $\alpha\text{-Fe}_2O_3$ additives on In_2O_3 behavior is negligible. The high activity of $\gamma\text{-Fe}_2O_3\text{-In}_2O_3$ composite in the O_3 detection can be associated with the specific features of $\gamma\text{-Fe}_2O_3$ structure, like the presence of metal cation vacancies within the crystal lattice and the readiness of $Fe^{2+} \leftrightarrow Fe^{3+}$ transformation under exposure by gaseous species. Nevertheless, the available data are not sufficient in order to realize if iron oxides are suitable materials for gas sensing applications

As it is known, $\gamma\text{-Fe}_2\text{O}_3$ is characterized by a comparatively low thermal stability with respect to $\gamma\text{-Fe}_2\text{O}_3 \to \alpha\text{-Fe}_2\text{O}_3$ phase transformation that ordinarily occurs at 485 °C. This peculiarity of $\gamma\text{-Fe}_2\text{O}_3$ limits its use as long-term stable gas-sensitive material.

The gas-sensitive properties of thin film layers of complex structure based on both γ -Fe₂O₃ and α -Fe₂O₃ have been extensively characterized in this paper. The use of systems with complex composition allows us to

0925-4005/03/\$ - see front matter © 2003 Published by Elsevier Science B.V.

^{*}Corresponding author. Tel.: +375-17-2208106; fax: +375-17-2264696.

doi:10.1016/S0925-4005(03)00175-8

increase significantly the thermal stability of γ -Fe₂O₃ phase (up to 650 °C) in γ -Fe₂O₃–In₂O₃ composite and to modify its gas-sensitive characteristics by imparting to the sensors the required sensitive and dynamical features.

copy (TEM) and Mössbauer spectroscopy. The resonance spectra were recorded and processed in a commercial SM2201 Mössbauer spectrometer. The measurements reported here were performed at 298 K using a 15 mCi ⁵⁷Co (Rh) source.

2. Experimental

The gas-sensitive properties of thin film double-layer sensors based on Fe₂O₃, and Fe₂O₃–In₂O₃ (Fe:In = 9:1 and 1:1, mol) were investigated; sensor response values to CH₃OH, C₂H₅OH (100–500 ppm), CH₄, CO (50 ppm) ozone (200 ppb) and NO₂ (0.5–5 ppm) were obtained.

The sensitive elements were formed from the stabilized sols of the corresponding metal hydroxides which were prepared by the sol-gel technique. The procedure of sol preparation used in this study consisted of the following steps:

- (i) forced hydrolysis of inorganic metal salt solution (FeCl₂, In(NO₃)₃) with a basic agent (NH₃),
- (ii) precipitation of metal hydroxide followed by its separation,
- (iii) formation of sol through peptization of the deposit with a peptizing agent or as a result of selfpeptization.

The α -Fe₂O₃–In₂O₃ composite was prepared by combined precipitation of Fe(OH)₂ and In(OH)₃ hydroxides followed by their oxidation with oxygen. A flow of air was passed through the corresponding suspension during 5–6 h at 30 °C to perform the material oxidization. In contrast, γ -Fe₂O₃–In₂O₃ sample was obtained by mixing of individual sols of γ -Fe₂O₃ and In(OH)₃ in the required proportions.

Sols were deposited onto polycrystalline Al_2O_3 substrates $(3 \text{ mm} \times 3 \text{ mm} \times 0.25 \text{ mm} \text{ size})$ with Pt interdigital electrode deposited on the front side and Pt meander heater on the back side.

An $\rm In_2O_3$ sub-layer was preliminary deposited onto the substrate in order to form the heterojunction structure and provide suitable sensor conductance. A single-layer sensor, consisting only of $\rm In_2O_3$ or $\rm Fe_2O_3$ also were studied in parallel for comparison. The samples were dried at 25 °C and annealed at 300 °C in air.

The sensors were then mounted on a TO8 standard cases and were put inside the a chamber for the DC electrical measurements in presence of fixed gas concentrations and RH levels.

The sensor response was calculated as $\Delta G/G_{\rm air}$ at CH₃OH, C₂H₅OH, CH₄, CO detection and as $\Delta G/G_{\rm gas}$ at NO₂ and O₃ detection, where *G* is the electrical conductance of sensitive layer.

The structure of the single oxides (Fe₂O₃, In₂O₃) and nanocomposites (Fe₂O₃–In₂O₃) were characterized by means of X-ray diffraction (XRD), transmission electron micros-

3. Results and discussion

3.1. Gas-sensitive properties

As it was found, γ -Fe₂O₃–In₂O₃ (9:1)/In₂O₃ and α -Fe₂O₃–In₂O₃ (9:1)/In₂O₃ sensors are characterized by high sensitivity to O₃ and NO₂, respectively, over a low temperature range (70–135 °C), as it is reported in Fig. 1a and b. These response values are greater than those ones typical for a single-layer sensors based on In₂O₃ and Fe₂O₃.

The response values of $\alpha\text{-Fe}_2\text{O}_3$ and $\gamma\text{-Fe}_2\text{O}_3$ samples to O_3 and NO_2 at various operating temperatures are reported in Table 1. It is clearly seen from these data that $\gamma\text{-Fe}_2\text{O}_3\text{-In}_2\text{O}_3$ (9:1)/In $_2\text{O}_3$ sensor shows a high conductance variation in the O_3 atmosphere at 135 °C, while its response to NO_2 at the same temperature is negligible. In contrast, $\alpha\text{-Fe}_2\text{O}_3\text{-In}_2\text{O}_3$ (9:1)/In $_2\text{O}_3$ sample shows a good response to NO_2 in the temperature range 50–100 °C together with a rather low one to O_3 . These distinctions, observed in the behavior of both composites, can be used for a selective analysis of O_3 and NO_2 in the gas mixture.

Generally, the sensitivity of In_2O_3 and SnO_2 films to O_3 is lower in comparison with its sensitivity towards NO_2 [7,8]. In contrast, Fe_2O_3 – In_2O_3 layers are characterized by a higher sensitivity to O_3 than to NO_2 . Moreover, the indicated compositions show better NO_2 detection performances than the previously investigated sensors based on In_2O_3 –NiO [9] and In_2O_3 – MoO_3 thin films [7].

It should be noted that the sensors show insufficiently rapid response and rather long recovery time at low operating temperatures. Isothermal response of α -Fe₂O₃-In₂O₃ (9:1)/In₂O₃ double-layer to 5 ppm NO₂ is represented in

Table 1 The comparison of response values of sensors based on both $\alpha\text{-Fe}_2O_3$ and $\gamma\text{-Fe}_2O_3$ to O_3 and NO_2

Detected	$C_{\rm gas}$ (ppb)	T (°C)	$\Delta G/G_{ m gas}$		
gas			α-Fe ₂ O ₃ -In ₂ O ₃ (9:1)/In ₂ O ₃	γ-Fe ₂ O ₃ –In ₂ O ₃ (9:1)/In ₂ O ₃	
O_3	100	100	65	130	
	100	135	450	8670	
NO_2	500	100	65	15	
	500	135	75	10	
	5000	100	600	90	
	5000	135	440	50	

123

M. Ivanovskaya et al./Sensors and Actuators B 7031 (2003) 1-9

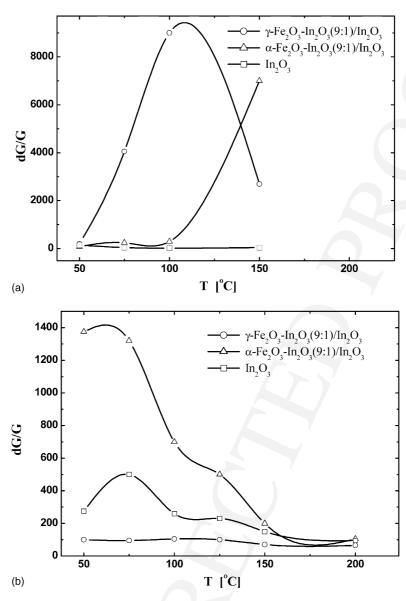


Fig. 1. Temperature-dependent responses of In_2O_3 based sensors to (a) 200 ppb O_3 and (b) 5 ppm NO_2 .

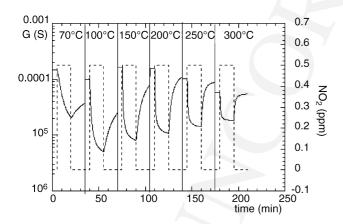


Fig. 2. Isothermal response of $\alpha\text{-Fe}_2O_3\text{-In}_2O_3$ (9:1)/In $_2O_3$ thin film sensor between 70 and 300 $^\circ\text{C}$ to 5 ppm NO $_2$ in 50% RH.

Responses and dynamical parameters of $\rm In_2O_3$ and α -Fe₂O₃–In₂O₃ (9:1)/ In₂O₃ thin film sensors to 5 ppm NO₂ vs. temperature in the range of 55–250 °C

T (°C)	In_2O_3			$\alpha\text{-Fe}_2O_3\text{-In}_2O_3\ (9\text{:}1)\text{/In}_2O_3$		
	$\Delta G/G_{ m gas}$	τ_{res} (s)	$\tau_{\rm rec}$ (s)	$\Delta G/G_{ m gas}$	$\tau_{\rm res}$ (s)	τ _{rec} (s)
55	300	110	>900	1375	30	>900
75	500	35	>900	1375	30	>900
100	260	30	>900	560	25	>900
135	220	25	>900	440	20	>900
150	45	25	850	110	25	800
200	12	25	725	25	20	540
250	3	25	235	4	25	90

M. Ivanovskaya et al./Sensors and Actuators B 7031 (2003) 1-9



Fig. 3. Comparison of sensitivity of In₂O₃ based sensors doping with oxides of different metals to 1 ppm NO₂.

Fig. 2. The responses and dynamical characteristics of In_2O_3 and α -Fe₂O₃–In₂O₃ (9:1)/In₂O₃ thin film sensors are compared in Table 2.

Fig. 3 shows the dependence of the response values to NO_2 on the operating temperature for sensors with different composition of the sensitive layer. As it is seen from these curves, Fe_2O_3 – In_2O_3 sensors have not only the greatest signals, but they can operate properly at relatively low temperatures.

Fe₂O₃-In₂O₃/In₂O₃ and Fe₂O₃-In₂O₃ sensors posses poor responses to low concentration of 50 ppm CO, as it is shown in Fig. 4; they are also almost insensitive both to CH₄ and NH₃.

It is important to note that all double-layer sensors are much more sensitive towards alcohol (C_2H_5OH , CH_3OH) vapors than single-layer In_2O_3 and Fe_2O_3 samples; the maximum response is showed by γ -Fe $_2O_3$ -In $_2O_3$ composite. Temperature dependent responses of γ -Fe $_2O_3$ -In $_2O_3$ and In_2O_3 sensors are represented in Fig. 5.

One should also point out that Fe_2O_3 -containing films are insensitive to O_3 and NO_2 over the temperature range of the most efficient ethanol detection (250–400 °C); at the same time, their sensitivity regarding ethanol is negligible at 50–150 °C, when O_3 and NO_2 interaction with oxide surface has the maximum value. An increase of the In_2O_3 content within Fe_2O_3 - In_2O_3 composite up to 50 mol%

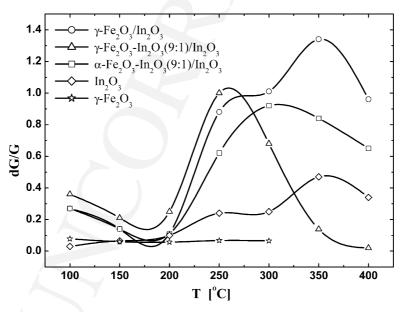


Fig. 4. Temperature-dependent responses of the layers of different composition to 50 ppm CO.

M. Ivanovskaya et al./Sensors and Actuators B 7031 (2003) 1-9

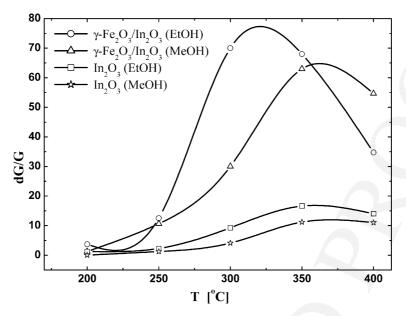


Fig. 5. Temperature-dependent responses of In_2O_3 and Fe_2O_3 based single- and double-layer sensors to 100 ppm C_2H_5OH and 100 ppm CH_3OH .

leads to the growth of the sensor responses both to NO₂ and ethanol.

The comparison of gas-sensitive behavior of both singleand double-layer Fe₂O₃ species regarding NO₂, CO and ethanol is presented in Table 3. In the case of O₃, the response of single Fe₂O₃ layer was negligible and irreproducible.

Referring to the results of functional and structural investigations, we can recommend a series of Fe_2O_3 – In_2O_3 samples with different structural and phase state to be used as advanced materials for O_3 , NO_2 and C_2H_5OH detection. The particular compositions, dispersion, structural and phase features are listed in Table 4. The first three sensors appeared absolutely selective to O_3 , NO_2 and C_2H_5OH at the indicated operating temperature. The fourth one can be used for NO_2 detection (low temperatures) as well as for C_2H_5OH analysis (higher temperatures).

3.2. Structural characterization

Both TEM and XRD data give evidence that all the films studied appear to be nanosized systems.

Table 3 The comparison of gas-sensitive behavior of In_2O_3 , Fe_2O_3 and $Fe_2O_3-In_2O_3$ thin films

Sensor	NO ₂ , 5 ppm		CO, 50 ppm		C ₂ H ₅ OH, 100 ppm	
	$\Delta G/G_{ m gas}$	T (°C)	$\Delta G/G_{ m air}$	T (°C)	$\Delta G/G_{ m air}$	T (°C)
In ₂ O ₃	40	100	0.45	350	15	350
Fe_2O_3	5	100	0.1	250	15	350
Fe ₂ O ₃ –In ₂ O ₃	65	135	1.25	350	65	300

Table 4 displays the average grain size of the samples (300 °C) calculated from the corresponding XRD line broadening.

According to the XRD pattern, α -Fe₂O₃-In₂O₃ (9:1) composite consists of α -Fe₂O₃ phase with increased parameters of unit cell (see Fig. 6). The increasing of the cell parameters is caused by the substitution of part of Fe(III) ions with In(III) ones. Besides, the X-ray reflexes assigned to the α -Fe₂O₃ phase are strongly broadened; this fact can be explained both by the nano-dimension of particles and the high defectiveness of the crystalline structure.

It was also assumed that $\alpha\text{-Fe}_2O_3$ phase, obtained through the oxidation of $\gamma\text{-Fe}_2O_3$ phase, is quite different from $\alpha\text{-Fe}_2O_3$ phase prepared by thermal dehydration of $\alpha\text{-modification of iron(III)}$ hydroxide. The irregularity of Fe(III) state within $\alpha\text{-Fe}_2O_3\text{-In}_2O_3$ (9:1) can be observed from the Mössbauer pattern recorded from the indicated sample.

Table 4

The most promising gas-sensitive materials recommended for fabricating of highly selective sensors and their structural peculiarities

Sample	T (°C)	Detected gas	Phase composition	Particle size (nm)
γ-Fe ₂ O ₃ -In ₂ O ₃ (9:1)	135	O ₃	γ-Fe ₂ O ₃ ^a C-In ₂ O ₃	25 25
α -Fe ₂ O ₃ -In ₂ O ₃ (9:1)	70–100	NO ₂	α -Fe ₂ O ₃ γ -Fe ₂ O ₃	10–15
γ -Fe ₂ O ₃	250	C ₂ H ₅ OH		25–30
γ -Fe ₂ O ₃ -In ₂ O ₃ (1:1)	70–100	NO ₂	$C-In_2O_3^a$	7–8
	300	C ₂ H ₅ OH	$\gamma-Fe_2O_3$	5

Temperature of annealing is 300 °C.

^a Main phase.

218

219

220

221

223

224

225

M. Ivanovskaya et al./Sensors and Actuators B 7031 (2003) 1-9

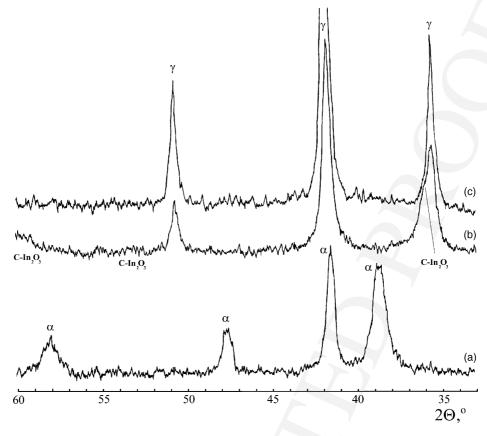


Fig. 6. XRD patterns recorded from (a) α -Fe₂O₃-In₂O₃ (9:1), (b) γ -Fe₂O₃-In₂O₃ (9:1) and (c) γ -Fe₂O₃ samples. Temperature of annealing is 300 °C.

Regarding to magnetic properties, the oxides prepared by the sol-gel technology differ from the corresponding standard sample (Fig. 7a and b). We can distinguish three types of Fe(III) ions with discriminate parameters in Mössbauer spectrum of α -Fe₂O₃-In₂O₃ composite (Table 5).

(i) About 78% of total amount of Fe(III) ions is characterized by magnetic parameters and coordination environment typical for Fe(III) ions within amorphous or poorly crystallized α-Fe₂O₃ phase.

Table 5 Parameters of Mössbauer spectra recorded from iron-containing samples at

Sample	$\delta~({\rm mm~s^{-1}})$	$\Delta (\mathrm{mm \ s}^{-1})$	B (T)
α-Fe ₂ O ₃ -In ₂ O ₃ (9:1) (300°C)	0.38 (78)	0.08	50.7
	0.53 (15)	0	0
	0.22 (7)	0.69	0
γ-Fe ₂ O ₃ -In ₂ O ₃ (9:1) (300 °C)	0.33	0.02	48.6
γ-Fe ₂ O ₃ (sol) (300 °C)	0.34	-0.03	49.1
γ-FeOOH (300 °C)	0.33	0.78	0
α-Fe ₂ O ₃ (amorphous) (300 °C)	0.39	0.09	50.7
γ-Fe ₂ O ₃ (standard sample)	0.34	-0.05	49.6
α-Fe ₂ O ₃ (standard sample)	0.47	0.24	51.8
•	0.38	0.12	51.5

The values in parentheses are in percent.

(ii) About 15% of Fe(III) has a cubic coordination environment. This type of coordination can be assigned to isolated Fe(III) ions in octahedral environment of oxygen, which is typical for cubic In₂O₃ modification. Moreover, γ -Fe₂O₃ can possess cubic structure as well.

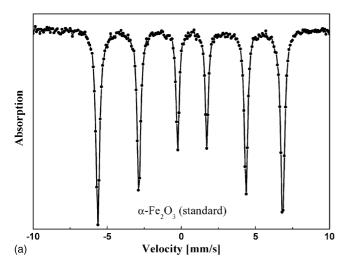
Under sample heating at 150–200 °C, the γ-Fe₂O₃ phase remains stable within α -Fe₂O₃-In₂O₃ (9:1) sample obtained from Fe(II) precursor, which was used in this study. The annealing of the composite at temperatures over 250 °C leads to the transformation of γ -Fe₂O₃ phase doped with In(III) ions into α -Fe₂O₃, whereas individual γ-Fe₂O₃ oxide remains stable regarding $\gamma\text{-Fe}_2O_3 \rightarrow \alpha\text{-Fe}_2O_3$ phase transformation up to 485 °C. Moreover, γ-Fe₂O₃ phase within γ-Fe₂O₃-In₂O₃ composite is stable at temperatures up to 700 °C depending on the component ratio. Thus, in the case of γ -Fe₂O₃-In₂O₃ (9:1) sample, the γ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃ phase transformation occurs at about 500 °C.

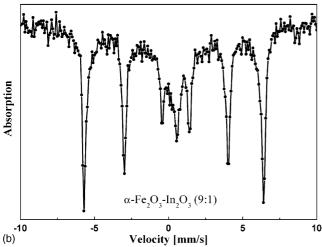
(iii) A minor part of Fe(III) ions (7%) can be only assigned to γ -FeOOH structure.

Therefore, the sample based on γ -Fe₂O₃-In₂O₃ (9:1) consists of γ-Fe₂O₃; a small amount of C-In₂O₃ phase is also present (See Fig. 6). In this case, the grain size is greater than in the case of α-Fe₂O₃ sample with the same composition. Mössbauer pattern of γ-Fe₂O₃-In₂O₃ system differs from that one recorded from the standard sample by broad227 228 229

230

232 235


237 239 240


241 242 243

247

248 249 250

M. Ivanovskaya et al./Sensors and Actuators B 7031 (2003) 1-9

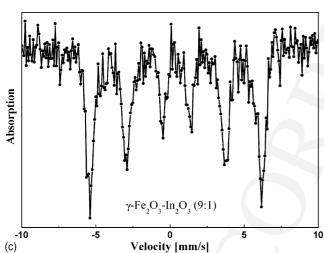


Fig. 7. Mössbauer spectra recorded from (a) $\alpha\text{-Fe}_2O_3$ standard, (b) $\alpha\text{-Fe}_2O_3\text{-In}_2O_3$ (9:1) and (c) $\gamma\text{-Fe}_2O_3\text{-In}_2O_3$ (9:1) samples at 298 K.

ening and asymmetric shape of the resonance peaks (Fig. 7c). The distinctions in shape and parameters observed in Mössbauer spectra recorded from γ -Fe₂O₃–In₂O₃ and γ -Fe₂O₃ samples probably result from the following factors: γ -Fe₂O₃ cubic lattice distortion, irregularity of Fe(III) octahedral

environment or Fe–O bond ionicity shift in the presence of In(III) ions within γ -Fe₂O₃ crystal lattice.

3.3. Regularities of certain gas detection

On the base of the obtained results we made an attempt to find the correlation between gas-sensitive behavior of $Fe_2O_3-In_2O_3/In_2O_3$ and $Fe_2O_3-In_2O_3$ active layers and their structural features.

3.3.1. Nitrogen dioxide

In order to obtain an advanced sensor for NO_2 detection, it is necessary to use materials which are characterized by high dispersion and defectiveness [10]. It is well known that doping of In_2O_3 with Ni(II) and Mo(VI) ions results in increasing of In_2O_3 based sensor sensitivity to NO_2 [7,9]. Addition of these ions leads to the formation of strongly defective In_2O_3 structure and favors the decreasing of oxide grains.

Similar changes were observed for α-Fe₂O₃ oxide doped with In(III) ions. In the case of α -Fe₂O₃-In₂O₃ (9:1) sample, together with α -In_xFe_{2-x}O₃ solid solution, it is possible to distinguish other structural elements based on Fe₂O₃. We have yet not succeeded in identification of the supposed additional phases using XRD analysis, but the presence of several types of Fe(III) ions was confirmed by Mössbauer spectroscopy. An increased Fe–O bond length and the distortion of octahedral environment of Fe(III) ions favors the effective adsorption of NO₂, whereas the presence of two types of ions (Fe(III) and In(III)) within the α -In_xFe_{2-x}O₃ solid solution facilitates to a certain extent the desorption of oxygen in comparison with the simple oxides. Thus, high sensitivity of α-Fe₂O₃-In₂O₃ films to NO₂ at low temperatures can be explained by high system dispersion and the presence of Fe(III) ions in irregular coordination environment which is evoked by doping of Fe₂O₃ phase with In(III) ions.

The growth of the response value of γ -Fe₂O₃-In₂O₃/In₂O₃ sensor with the increasing of In₂O₃ content from 10 to 50% within composite can be connected with grain size decreasing and the formation of highly defective sample with the high specific surface.

3.3.2. Ozone

The most important requirement for the efficient detection of ozone at low temperatures (70–100 °C) is the suitable catalytic activity of an oxide in reaction of ozone decomposition:

$$O_3 \rightarrow O_2 + O$$
.

Iron oxide is known to be an active catalyst in this process; the main factors which influence the catalytic ability of Fe_2O_3 are oxidation state of a sample and its dispersion [11]. The oxidation level of the sample is closely related to its activity. Thus, α -Fe₂O₃ possesses better catalytic properties than γ -Fe₂O₃.

With regards to O_3 , α -Fe₂ O_3 phase demonstrates considerably higher sensitivity in comparison with γ -Fe₂ O_3 species

312

313

314

315

317

318

319

320

321

322

323

324

325

327

328

329

330

331332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

[6]. However, the origin of different behavior of these systems is still unclear. In the case of γ -Fe₂O₃–In₂O₃ composite, the presence of separate γ -Fe₂O₃ phase probably provides an elevated activity of this sample towards O₃ at low temperatures. In contrast, α -Fe₂O₃–In₂O₃ sample consists of In(III)— α -Fe₂O₃ solid solution; catalytic ability of α -Fe₂O₃ phase in O₃ decomposition reaction is insignificant.

Since at low temperatures a limiting stage of the reaction is removing of chemisorbed oxygen, the presence of the second phase (In_2O_3) in γ -Fe₂O₃ is capable to facilitate the desorption of oxygen from the oxide surface.

At temperatures higher than $100\,^{\circ}\text{C}$ decomposition of ozone is passing effectively in gas phase according to the following equation:

$$O_3 \rightarrow O_2 + O$$

Detection of O_3 is going at Fe_2O_3 – In_2O_3 through the adsorption of not molecular (O_2) but atomic (O) oxygen species. Thus, one can explain the observed differences in optimal detecting temperature of O_3 using α - Fe_2O_3 – In_2O_3 and γ - Fe_2O_3 – In_2O_3 composites by change of detection mechanism as a result of operating temperature variation.

3.3.3. Alcohol

The sensors based on heterojunction oxide structures show considerable response in alcohol (ethanol, methanol) media. The heterojunction between the oxide and the solid solution phases appears to be very active in course of both adsorption and oxidation of alcohol.

It is shown in [12] that the presence of two types of centers possessing the discriminate redox and acid-base properties and participating in transformation processes of alcohol molecule is an essential requirement to achieve high sensor response when alcohol detection is mentioned. Alcohol detection is considered as a multi-step process involving both reductive-oxidative and acid-base interactions. Oxide phases within the composite differ by oxygen-oxide surface bonding energy which can be the relative measure of oxide activity in the oxidation reactions. The reactivity of oxides in acid-base reactions depends on electronegativity of metal cation. The electronegativity is the measure of Lewis acid site activity. Thus, the centers of one type can mainly participate in adsorption-desorption processes of alcohol molecules, whereas complete oxidation of intermediates is going effectively at the centers of another type.

Increased response of γ -Fe₂O₃–In₂O₃ (1:1)/In₂O₃ sample as compared with γ -Fe₂O₃–In₂O₃ can be explained by the presence of an higher contact interface between In₂O₃ and γ -Fe₂O₃ phases within γ -Fe₂O₃–In₂O₃ composite.

4. Conclusions

The sensing characteristics of Fe₂O₃–In₂O₃ sensors towards gases of different chemical nature are found to be very promising. It is important to note that the most sensitive materials consist of two layers. In this case, the specific heterojunction is formed providing the differentiation between receptor and transducer functions. As it was established, $\gamma\text{-Fe}_2\text{O}_3\text{-In}_2\text{O}_3$ (9:1) composite is highly sensitive to O_3 ; on the contrary, the $\alpha\text{-Fe}_2\text{O}_3\text{-In}_2\text{O}_3$ (1:1) system possesses the highest sensitivity to NO2. The $\gamma\text{-Fe}_2\text{O}_3\text{-In}_2\text{O}_3$ sensor is sensitive to C₂H₅OH at considerably higher temperatures (250–300 °C) but it is practically inactive to detect the other reducing gases (CH₄, CO, NH₃).

An attempt to establish the correlation between particular structural features of the samples and their gas-sensitive behavior was made in this paper.

Acknowledgements

This work has been performed in the frame of the EC Program "INCO-COPERNICUS-II" (GASMOH Project #ICA2-CT-2000-10041).

References

- [1] Y. Nakatani, M. Matsuoka, Effect of sulfate ion on gas sensitive properties of α-Fe₂O₃ ceramics, Jpn. J. Appl. Chem. (1982) L758–L760.
- [2] T.G. Newor, St.P. Yordanov, Ceramic gas sensors: technique and application, Techmomic, Lancosh, 1996.
- [3] W. Chang, D. Lee, Characteristics of α-Fe₂O₃ thick film gas sensors, Thin Solid Films 200 (1991) 329–339.
- [4] O.K. Tan, W. Zhu, Q. Yan, L.B. Kong, Size effect and gas sensing characteristics of nanocrystalline $x\text{SnO}_2$ – $(1 x)\alpha$ -Fe₂O₃ ethanol sensors, Sens. Actuators B 65 (2000) 361–365.
- [5] T. Takada, K. Suzuki, M. Nakane, Highly sensitive ozone sensor, Sens. Actuators B 13–14 (1993) 404–407.
- [6] F.H. Chibirova, E.E. Gutman, Structural defects and gas-sensitive properties of some semiconductor metal oxides, Rus. J. Phys. Chem. 74 (9) (2000) 1555–1561.
- [7] A. Gurlo, N. Bârsan, M. Ivanovskaya, U. Weimar, W. Göpel, In₂O₃ and In₂O₃—MoO₃ thin film semiconductor sensors: interaction with NO₂ and O₃, Sens. Actuators B 47 (1998) 92–99.
- [8] M. Ivanovskaya, A. Gurlo, P. Bogdanov, Mechanism of O₃ and NO₂ detection and selectivity of In₂O₃ sensors, Sens. Actuators B 77 (2001) 264–267.
- [9] M. Ivanovskaya, P. Bogdanov, G. Faglia, G. Sberveglieri, The features of thin film and ceramic sensors at the detection of CO and NO₂, Sens. Actuators B 68 (2000) 344–350.
- [10] P. Bogdanov, M. Ivanovskaya, E. Comini, G. Faglia, G. Sberveglieri, Effect of nickel ions on sensitivity of In₂O₃ thin film sensors to NO₂, Sens. Actuators B 57 (1999) 153–158.
- [11] V.V. Lunin, M.P. Popovich, S.N. Tkachenko, The Physical Chemistry of Ozone, Moscow State University, Moscow, 1998.
- [12] M. Ivanovskaya, D. Kotsikau, G. Faglia, P. Nelli, Influence of chemical composition and structural factors of Fe₂O₃-In₂O₃ based sensors on their selectivity and sensitivity to ethanol, in: Proceedings of the International Conference on Eurosensors XVI, Prague, Czech Republic, 15–18 September 2002.

Biographies

Maria Ivanovskaya received her degree in chemistry in 1980 from Belarus State University in the field of photochemistry. Till 1988 she carried out investigations in the field of solid state photochemistry (TiO₂, ZnO,

364

366

367

ar 373 ve 374 375

> 377 378 379

376

ve 381 50. 382 and 383 384

, 385 386 g 387 l 388

388 389 ; 390

391 ve 392 n. 393

398 399 400

400 401 402

402 403 404

1, 404 2, 405 406

y 407

408 of 409

ed 410 lgs 411

h 412

413

415 416

ARTICLE IN PRESS

M. Ivanovskaya et al./Sensors and Actuators B 7031 (2003) 1-9

BiOBr) and chemistry of photographic processes. Since 1989 she has been

sensors. In 2000 he has been appointed associate professor in Experimental

418

436

456

9

437

455

Physics at University of Brescia. During his career Guido Faglia has

Petersburg, 1997, over 80 publications and 20 patents.

419	worked in Scientific and Research Institute for Physical and Chemical	published more than 60 articles on International Journals with referee.	438
420	Problems (Belarus State University). Since 1993 she has been occupied a		
421	leading research position. Her main scientific interests are solid state	Paolo Nelli received his MS degree in physics from the University of Pavia	439
422	chemistry in applications to catalysis and semiconductor gas sensors,	in 1987, after then he joined the Gas Sensor Laboratory at the University of	440
423	structural features of nanosized oxides (SnO2, MoO3, In2O3, Fe2O3) and	Brescia, where at present he carries out his research activity on gas sensors.	441
424	oxide composites.	He held a permanent position at the Department of Chemistry and Physics	442
		for Materials of the University of Brescia; his interests are focused on the	443
425	Dzmitry Kotsikau graduated from the Belarus State University in 2001 with	preparation and characterization of gas sensors based on semiconducting	444
426	honors; in the same year entered the post graduate courses. Now he is	metal oxides. He is co-author of about forty papers on gas sensors and	445
427	working in the field of solid state chemistry and semiconductor gas	material science and 30 presentations at international congresses on the	446
428	sensors. His main scientific interests are Fe ₂ O ₃ -In ₂ O ₃ nanosized	same topics.	447
429	composites, their structural and gas-sensitive characterization.		
		Sobir Irkaev graduated from the Tadjik State University in 1965; then he	448
430	Guido Faglia has received an MS degree from the Polytechnic of Milan in	entered the post graduate courses in Moscow State University in 1967. He	449
431	1991 with a thesis on gas sensors. In 1992 he has been appointed as a	received his Doctor of Science degree in 1994; Philosophy Doctor degree	450
432	researcher by the Gas Sensor Laboratory at the University of Brescia. He is	in 1971. Now he is working at Institute for Analytical Instrumentation of	451
433	involved in the study of the interactions between gases and semiconductor	Russian Academy of Science, since 1971 up to now occupies the head of	452
434	surfaces and in gas sensors electrical characterization. In 1996 he has	Resonance Laboratory position. He is the author of two monographs:	453
435	received the PhD degree by discussing a thesis on semiconductor gas	"Nuclear Gamma Resonance", 1970 and "Mössbauer Spectroscopy", St.	454