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1. Introduction

Let D be a division algebra finite-dimensional over its center K . Let τ be a unitary involution
on D , i.e., τ is an antiautomorphism of D with τ 2 = id such that τ |K �= id. By definition,

SK1(D, τ ) = Σ ′
τ (D)/Στ (D),

where

Στ (D) = 〈{
a ∈ D∗ ∣∣ a = τ (a)

}〉
and

Σ ′
τ (D) = {

a ∈ D∗ ∣∣ NrdD(a) = τ
(
NrdD(a)

)}
.
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(Other notation has been used in past for what we call SK1(D, τ ), including USK1(D) in [5],
SK1U(τ , D) in [6], and SUK1(D) in [9].)

Analogously, suppose E = ⊕
γ ∈ΓE

Eγ is a graded division algebra (i.e., a graded ring in which
all nonzero homogeneous elements are units) of finite rank over its center Z, and with torsion-free
abelian grade group ΓE . Suppose E has a unitary graded involution τ , which is a ring antiautomor-
phism with τ (Eγ ) = Eγ for each γ , such that τ 2 = id and τ |Z �= id. Then there is a reduced norm
map NrdE : E → Z, and one can define Στ (E), Σ ′

τ (E), and SK1(E, τ ) just as we did above for D . Any
such E has a ring of (central) quotients, q(E) = E ⊗Z q(Z), where q(Z) is the quotient field of the in-
tegral domain Z, and it is known that q(E) is a division ring finite-dimensional over its center, which
is q(Z). The unitary graded involution τ on E extends canonically to a unitary involution on q(E), also
called τ . In this paper we will prove the following:

Theorem 1.1. Let E be a graded division algebra (with torsion-free abelian grade group) finite-dimensional
over its center, and let τ be a unitary graded involution on E. Let q(E) be the quotient division ring of E and let
τ denote also the extension of τ to a unitary involution of q(E). Then,

SK1(E, τ ) ∼= SK1
(
q(E), τ

)
.

This theorem complements a result in [2]: Suppose D is a division algebra finite-dimensional over
its center K = Z(D), and suppose K has a Henselian valuation v . It is well known that v has a unique
extension to a valuation on D . The filtration on D induced by the valuation yields an associated
graded ring gr(D) which is a graded division algebra of finite rank over its center. If τ is a unitary
involution on D which is compatible with the valuation, there is an induced graded involution τ̃
on gr(D). It was shown in [2, Th. 3.5] that if the restriction of v to the τ -fixed field K τ is Henselian
and K is tamely ramified over K τ , then τ is compatible with v , τ̃ is unitary, and

SK1(D, τ ) ∼= SK1
(
gr(D), τ̃

)
. (1.1)

This theorem served to focus attention on unitary SK1 for graded division algebras. The graded divi-
sion algebra gr(D) has a significantly simpler structure than the valued division algebra D; notably
gr(D) has a much more tractable group of units (as they are all homogeneous). Consequently, SK1
calculations are often substantially easier for gr(D) than for D . This was demonstrated in [2] and [7],
where many formulas for SK1(gr(D), τ̃ ) were proved. By that approach new results on SK1(D, τ ) were
obtained, as well as new and simpler proofs of results that had previously been proved by calculations
that were often quite complicated. Now, by virtue of the theorem proved here, all the results proved
in [2] and [7] on SK1(E, τ ) for a graded division algebra E carry over to yield corresponding results
for SK1(q(E), τ ).

One of the key results for unitary SK1 is the “Stability Theorem,” which says that the unitary SK1
is unchanged on passage from a division algebra D to a rational division algebra over D . (This was
originally proved in [10, §23].) We will show at the end of Section 4 that the Stability Theorem is a
quick corollary of our theorem.

When the torsion-free abelian grade group ΓE of a graded division algebra E is finitely-generated
(hence a free abelian group), E has a concrete description as an iterated twisted Laurent polynomial
ring over the division ring E0, as follows: Take any homogeneous x1, . . . , xn in the group E∗ of units
of E such that ΓE = Zdeg(x1) ⊕ · · · ⊕ Zdeg(xn). Then,

E = E0
[
x1, x−1

1 , . . . , xn, x−1
n ;σ1, . . . , σn

]
,

i.e., E = En , where for i = 1,2, . . . ,n, Ei = Ei−1[xi, x−1
i ;σi], which is a Laurent polynomial ring over

Ei−1 with multiplication twisted by the relation xic = σi(c)xi for all c ∈ Ei−1. Each σi is a graded
(i.e., degree-preserving) automorphism of Ei−1, and σi is completely determined by its action on E0
and on x1, x2, . . . , xi−1. To assure that E is finite-dimensional over its center, it is assumed that some
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power of σi is an inner automorphism of Ei−1. The quotient division ring q(E) is the iterated twisted
rational division algebra

An = E0(x1, . . . , xn;σ1, . . . , σn), (1.2)

which is also the quotient division algebra of the iterated twisted polynomial ring E0[x1, . . . , xn;σ1,

. . . , σn].
In [12] the second author gave formulas for SK1(An, τn) for the iterated twisted rational division

algebras An as in (1.2) above, for a unitary involution τn on An arising from a unitary graded involu-
tion on the iterated twisted polynomial ring E0[x1, . . . , xn;σ1, . . . , σn]. The crucial identity

Σ ′
τn

(An) = (
Σ ′

τn
(An) ∩ E0

) · Στn(An) (1.3)

is given in that paper, with a much too brief and incomplete sketch of proof. (More detailed proofs
of this identity and other results in [12] are given in this author’s habilitation, which, regrettably, was
never published. A complete proof of the n = 1 case was given in [10].) As will be seen in Section 4
below, the proof of this identity, stated there as (4.1), constitutes the bulk of the proof of our theorem.
Our proof of this identity is by induction on n, as is done in [12], but the proof differs substantially,
in that it is carried out as much as possible by calculations in the divisor group Div(T ) of the twisted
polynomial ring in one variable T = E0[x1;σ1]. This Div(T ) is a free abelian group, and calculations
with it are significantly simpler than with the quotient division ring q(T ). The style of proof here is
analogous to the approach in [1, §5] to proving the corresponding result for the nonunitary SK1(E) of
a graded division algebra.

Th. 1.1 above, when combined with (1.1), provides a unifying perspective for understanding why
there is such a great similarity between the formulas for SK1(D, τ ) for D a division algebra over a
Henselian field, as in [9] and [13] and the formulas for SK1(E0(x1, . . . , xn;σ1, . . . , σn), τn) given in [10]
and [12]: The formulas in each case coincide with formulas for SK1(E, τ ) for a related graded division
algebra E.

Th. 1.1 and formula (1.1) are unitary analogues to results for nonunitary SK1 for division algebras
over Henselian fields, graded division algebras, and their associated quotient division algebras given
in [1, Th. 4.8, Th. 5.7]. This is another manifestation of the philosophy that results about SK1 ought
to have corresponding results for the unitary SK1. From the perspective of algebraic groups, this phi-
losophy is motivated by the fact that division algebras are associated with algebraic groups of inner
type An , while division algebras with unitary involution are associated with algebraic groups of outer
type An (see, e.g., [5, Ch. VI]).

2. Graded division algebras and unitary involutions

In this section we recall some basic known facts about graded division algebras and unitary in-
volutions which will be used in the proof of Th. 1.1. A good reference for the properties of graded
division algebras stated here without proof is [3].

Let Γ be a torsion-free abelian group. A ring E is a graded division ring (with grade group in Γ ) if
E has additive subgroups Eγ for γ ∈ Γ such that E = ⊕

γ ∈Γ Eγ and Eγ · Eδ = Eγ +δ for all γ , δ ∈ Γ ,
and each Eγ \ {0} lies in E∗ , the group of units of E. The grade group of E is

ΓE = {
γ ∈ Γ

∣∣ Eγ �= {0}},
a subgroup of Γ . For a ∈ Eγ \ {0} we write deg(a) = γ . A significant property is that E∗ = ⋃

γ ∈ΓE
Eγ \

{0}, i.e., every unit of E is actually homogeneous. (ΓE torsion-free is needed for this.) Thus, E is not
a division ring if |ΓE| > 1. But, E has no zero divisors. (This also depends on ΓE being torsion-free.)
However, E0 is a division ring, and each Eγ (γ ∈ ΓE) is a 1-dimensional left- and right-E0-vector
space.



A.R. Wadsworth, V.I. Yanchevskiı̆ / Journal of Algebra 352 (2012) 62–78 65
Let M be any graded left E-module, i.e., M is a left E-module with additive subgroups Mγ such that
M = ⊕

γ ∈Γ Mγ and Eγ · Mε ⊆ Mγ +ε for all γ ,ε ∈ Γ . Then, M is a free E-module with homogeneous
base, and any two such bases have the same cardinality, which is called the dimension, dimE(M);
M is therefore said to be a graded vector space over E.

Let Z = Z(E), the center of E, which is a graded subring of E. Indeed, Z is a graded field, i.e., a
commutative graded division ring. Then E is a left (and right) graded Z-vector space, and we write
[E : Z] for dimZ(E). In this paper we work exclusively with finite-dimensional graded division algebras,
i.e., those E with [E : Z] < ∞. Clearly Z0 is a field, and E0 is a finite-dimensional Z0-algebra. Moreover,
ΓZ is a subgroup of ΓE , and it is easy to verify the “fundamental equality”

[E : Z] = [E0 : Z0]|ΓE : ΓZ|. (2.1)

We have Z0 ⊆ Z(E0) ⊆ E0. Let G(Z(E0)/Z0) be the Galois group for the finite-degree field extension
Z(E0) of Z0. There is a well-defined canonical map

θE : ΓE → G
(

Z(E0)/Z0
)

given by θE
(
deg(a)

) : c 
→ aca−1 for all a ∈ E∗, c ∈ E0.

Clearly ΓZ ⊆ ker(θE), so | im(θE )| � |ΓE : ΓZ| < ∞. Moreover, the fixed field of im(θE) is Z0. Hence,
Z(E0) is Galois over Z0 with abelian Galois group G(Z(E0)/Z0) = im(θE).

Since Z is a commutative ring with no zero divisors, it has a quotient field q(Z). Then E has its
ring of central quotients

q(E) = E ⊗Z q(Z).

Because E is a free, hence torsion-free Z-module, the canonical map E → q(E), a 
→ a ⊗ 1, is injective.
Therefore, we view E as a subring of q(E). Note that q(E) has no zero divisors since E has none.
Furthermore, q(E) is a q(Z)-algebra with [q(E) : q(Z)] = [E : Z] < ∞. Hence, q(E) is a division ring,
called the quotient division algebra of E. Clearly, Z(q(E)) = q(Z). The index of E is defined to be
ind(E) = √[E : Z] = ind(q(E)) ∈ Z.

It is known that E is an Azumaya algebra over Z, and hence from general principles that there is a
reduced norm map NrdE : E → Z. In fact, by [1, Prop. 3.2(i)], NrdE coincides with the restriction to E
of the usual reduced norm Nrdq(E) on q(E). Also, by [1, Prop. 3.2(iv)], for a ∈ E0, we have

NrdE(a) = N Z(E0)/Z0

(
NrdE0(a)

)λ
where λ = ind(E)/

(
ind(E0) · [Z(E0) : Z0

])
, (2.2)

where NrdE0 is the reduced norm for E0 and N Z(E0)/Z0 is the field norm from Z(E0) to Z0.
A graded involution on the graded division algebra E is a ring antiautomorphism τ : E → E such

that τ 2 = idE and τ (Eγ ) = Eγ for each γ ∈ Γ . Such a τ is said to be unitary (or of the second kind)
if τ |Z �= idZ where Z = Z(E). Assuming τ is unitary, let F = Zτ = {c ∈ Z | τ (c) = c}, which is a graded
subfield of Z with [Z : F] = 2. It follows from the fundamental equality that either [Z0 : F0] = 2 and
ΓZ = ΓF or Z0 = F0 and |ΓZ : ΓF| = 2. The second case, where the involution induced by τ on E0 is
not unitary, tends to be uninteresting, but it can occur. We write τ also for the induced involution
τ ⊗ idq(F) on q(E) = E ⊗F q(F). Recall that for all a ∈ E we have

NrdE
(
τ (a)

) = τ
(
NrdE(a)

)
, (2.3)

since this equality holds for Nrdq(E) . (For, if a ∈ q(E), then Nrdq(E)(a) is determined by the minimal
polynomial pa of a over Z(q(E)), and pτ (a) = τ (pa).)

If τ ′ is another unitary graded involution on E, we write τ ∼ τ ′ if τ |Z = τ ′|Z . In particular, for
any c ∈ E∗ , if τ (c)c−1 ∈ Z∗ , then τ ′ = int(c) ◦ τ is a unitary graded involution on E, and τ ′ ∼ τ . Here
int(c) denotes the inner automorphism a 
→ cac−1 of E. Since c is homogeneous, int(c) is clearly a
graded (i.e., degree-preserving) automorphism of E.
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For a unitary graded involution τ on E, set Sτ (E) = {a ∈ E∗ | τ (a) = a}, the set of symmetric units
of E, and set

Στ (E) = 〈
Sτ (E)

〉
and Σ ′

τ (E) = {
a ∈ E∗ ∣∣ NrdE(a) ∈ Sτ (E)

}
.

Then, by definition, SK1(E, τ ) = Σ ′
τ (E)/Στ (E).

We recall a few fundamental facts about unitary involutions on ungraded division algebras which
have analogues for graded division algebras:

Lemma 2.1. Let D be a division algebra finite-dimensional over its center, and let τ and τ ′ be unitary involu-
tions on D.

(a) Suppose τ ∼ τ ′ (i.e., τ |Z(D) = τ ′|Z(D)). Then Σ ′
τ ′ (D) = Σ ′

τ (D) and Στ ′ (D) = Στ (D), so SK1(D, τ ′) =
SK1(D, τ ).

(b) [D∗, D∗] ⊆ Στ (D), where [D∗, D∗] = 〈aba−1b−1 | a,b ∈ D∗〉.

For a proof of (a), see [8, Lemma 1], and for (b) see [5, Prop. 17.26, p. 267]. Part (b) was originally
proved by Platonov and Yanchevskiı̆. See [2, Remark 4.1(ii), Lemma 2.3(iv)] for the graded versions
of (a) and (b).

3. The divisor group of a twisted polynomial ring

The proof of Th. 1.1, both in the case ΓE
∼= Z and also in the induction argument for ΓE

∼= Zn will
use properties of twisted polynomial rings in one variable over a division ring. In this section we give
the properties we need about the divisor group of such a twisted polynomial ring.

Let D be a division ring finite-dimensional over its center K , and let σ be an automorphism of D
whose restriction to K has finite order, and let T be the twisted polynomial ring

T = D[x;σ ],
consisting of polynomials

∑k
i=0 ai xi with ai ∈ D , with the usual addition of polynomials, but multipli-

cation twisted by σ , so that

(
axi)(bx j) = aσ i(b)xi+ j for all a,b ∈ D, i, j � 0.

For the factorization theory of such rings T , [4, Ch. 1] is an excellent reference. Let A = q(T ) = D(x;σ),
the quotient division ring of T , which is a twisted rational function division algebra in one variable.
We will make fundamental use of the “divisor group” Div(T ) described in [1, §5]: Let S be the set of
isomorphism classes [S] of simple left T -modules S; then

Div(T ) =
⊕
[S]∈S

Z · [S],

the free abelian group on S . (Note that in the commutative case when D is a field and σ = id, then
T is a polynomial ring, and Div(T ) is its usual divisor group. This is the source of the terminology.)
For simple T -modules S, S ′ , we have annT (S) and annT (S ′) are maximal two-sided ideals of T , and
S ∼= S ′ iff annT (S) = annT (S ′). Thus, we could have indexed Div(T ) by the maximal two-sided ideals
of T ; but, the indexing by simple modules is more natural for our purposes. We call an element
α = ∑

n[S][S] of Div(T ) a divisor, and call it an effective divisor if every n[S] � 0.
Also, there is a degree homomorphism

deg : Div(T ) → Z given by deg
(∑

n[S][S]) =
∑

n[S] dimD(S).
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Note that if M is any left T -module of finite length (equivalently, finite-dimensional as a D-vector
space), then M determines an effective Jordan–Hölder divisor

jh(M) =
k∑

i=1

[Mi/Mi−1],

where {0} = M0 � M1 � · · · � Mk = M is a chain of T -submodules of M with each Mi/Mi−1 simple.
The Jordan–Hölder Theorem shows that jh(M) is well defined.

Every simple left T -module has the form T /T p for some p ∈ T with p irreducible, i.e., p has
no factorization into a product of terms of positive degree. For nonzero f ∈ T with deg( f ) > 0, the
division algorithm shows that every nonzero element of T /T f has the form s + T f for some s ∈ T
with deg(s) < deg( f ). Using this, it is easy to check (cf. [1, Lemma 5.2]) that for nonzero f , g ∈ T of
positive degree

T /T f ∼= T /T g iff deg( f ) = deg(g) and there exist nonzero s, t ∈ T with

deg(s) = deg(t) < deg( f ) and f t = sg. (3.1)

There is a divisor function

δ : T \ {0} → Div(T ) given by δ( f ) = jh(T /T f ).

It is easy to check that δ( f g) = δ( f ) + δ(g), hence δ extends to a well-defined map δ : A∗ → Div(T )

given by δ( f z−1) = δ( f )−δ(z) for all f ∈ T \{0}, z ∈ Z(T )\{0}. Clearly, δ(T ) is the monoid of effective
divisors in Div(T ). Note also that deg(δ( f )) = deg( f ) for all f ∈ T \ {0}. It is proved in [1, Prop. 5.3]
that there is an exact sequence:

1 → [
A∗, A∗]D∗ → A∗ δ−→ Div(T ) → 0. (3.2)

Let R = Z(T ); so R is the polynomial ring K σ [y], where K σ = {b ∈ K | σ(b) = b} and y = c−1xm ,
with m minimal such that σm|K = id and c ∈ D∗ satisfying σm = int(c) on D . Note that q(R) = Z(A).
This R has its own divisor group Div(R), definable just as with Div(T ), and there is a corresponding
divisor map δR : q(R)∗ → Div(R). The reduced norm map NrdA : A → Z(A) maps T to R (as T is in-
tegral over R , and R is integrally closed), and it is shown in [1, Prop. 5.4] that there is a corresponding
“reduced norm” map DNrd : Div(T ) → Div(R) which is injective, and such that the following dia-
gram commutes:

A∗ δ−−−−→ Div(T )

NrdA

⏐⏐� DNrd

⏐⏐�
q(R)∗ δR−−−−→ Div(R)

(3.3)

Of course, T is a graded ring, with Ti = Dxi for all nonnegative i ∈ Z. Suppose ρ : T → T is a
graded automorphism of T , i.e., a ring automorphism such that ρ(Dxi) = Dxi for all i. Then, ρ restricts
to a graded automorphism of R and also determines ring automorphisms of A and q(R), all denoted ρ .

Lemma 3.1. The graded automorphism ρ of T determines an automorphism of Div(T ) mapping S to itself,
and also determines an automorphism of Div(R). The automorphisms determined by ρ on each of the terms
in diagram (3.3) are compatible with the maps in that diagram.



68 A.R. Wadsworth, V.I. Yanchevskiı̆ / Journal of Algebra 352 (2012) 62–78
Proof. Since ρ(D∗) = D∗ and ρ([A∗, A∗]) = [A∗, A∗], the exact sequence (3.2) shows that ρ de-
termines a well-defined automorphism ρ of Div(T ) given by ρδ(a) = δ(ρ(a)) for all a ∈ A∗ . Any
class in S has the form [T /T p] for some irreducible p in T . Then, ρ(p) is also irreducible in F ;
so, ρ[T /T p] = [T /Tρ(p)] ∈ S . For Div(R), ρ is defined analogously by ρ(δR(q)) = δR(ρ(q)) for all
q ∈ q(R)∗ . Since ρ is an automorphism of A, we have ρ(NrdA(a)) = NrdA(ρ(a)) for all a ∈ A. For,
NrdA(a) is determined by the constant term of the minimal polynomial pa ∈ Z(A)[X] of a over Z(A),
and pρ(a) = ρ(pa). Thus, we have ρ ◦ δ = δ ◦ ρ , ρ ◦ δR = δR ◦ ρ , and ρ ◦ NrdA = NrdA ◦ρ . Since
diagram (3.3) commutes and δ is surjective, it follows that ρ ◦ DNrd = DNrd ◦ρ . �

Suppose τ : T → T is a unitary graded involution. That is, τ is a ring antiautomorphism of T
with τ 2 = idT , τ |R �= id, and τ (Dxi) = Dxi for all i. (The last condition is equivalent to: τ (D) = D
and τ (x) = dx for some d ∈ D∗ .) This τ extends to a unitary involution on A given by τ ( f r−1) =
τ (r)−1τ ( f ) for all f ∈ T , r ∈ R \ {0}. Since τ ([A∗, A∗]) = [A∗, A∗] and τ (D∗) = D∗ , the exact sequence
(3.2) above shows that τ determines an automorphism of order at most 2 of Div(T ), also denoted τ .
This map τ : Div(T ) → Div(T ) is given by τ (δ(a)) = δ(τ (a)) for all a ∈ A∗ . (For a simple left T -
module S , we have S ∼= T /T p for some irreducible p ∈ T . Then, τ (p) is irreducible in T , and τ [S] =
[T /T τ (p)]. It may seem surprising that this is well defined, independent of the choice of p, but the
well-definition follows easily from (3.1). In terms of two-sided ideals, τ [S] is the isomorphism class
of simple left T -modules with annihilator τ (annT (S)).) Let Div(T )τ = {α ∈ Div(T ) | τ (α) = α}.

Lemma 3.2. Let τ be a unitary graded involution on T . Suppose τ |D �= id or T is noncommutative. Then,

δ
(
Στ (A)

) = Div(T )τ .

Proof. Suppose first that τ |D �= id.
Let Ω = δ(Στ (A)) ⊆ Div(T ). Since δ maps generators of Στ (A) into Div(T )τ , we have

Ω ⊆ Div(T )τ . We must prove that this inclusion is equality. Suppose that Ω � Div(T )τ .
Note that if α ∈ Div(T ), say α = δ(a), then α + τ (α) = δ(aτ (a)) ∈ Ω . Take any η ∈ Div(T )τ \ Ω .

We can write η = α − β , where α and β are effective divisors. Then,

α + τ (β) = η + (
β + τ (β)

) ≡ η (mod Ω).

So, α + τ (β) is an effective divisor in Div(T )τ \ Ω .
Let ξ be an effective divisor in Div(T )τ \ Ω of minimal degree. Necessarily deg(ξ) > 0, as ξ �= 0.

Say ξ = δ(z) for some z ∈ T . So, deg(z) = deg(ξ) > 0. Factor z into irreducibles in T , say z = p1 · · · p� ,
and let πi = δ(pi). So,

π1 + · · · + π� = η = τ (η) = τ (π1) + · · · + τ (π�).

Because the πi and τ (πi) are all part of the Z-base of the free abelian group Div(T ), we must have
π1 = τ (π j) for some index j. Suppose j > 1. Then, π1 +π j = π1 + τ (π1) ∈ Ω . Let ξ ′ = ξ − (π1 + π j).
Then, ξ ′ ≡ ξ (mod Ω). But, ξ ′ is an effective divisor with deg(ξ ′) < deg(ξ). This contradicts the
minimality of deg(ξ). So, we must have j = 1, i.e., τ (π1) = π1. If π1 ∈ Ω , then ξ − π1 is an effective
divisor in Div(T )τ \ Ω of degree less than deg(ξ). Hence π1 ∈ Div(T )τ \ Ω , so in fact ξ = π1 by the
minimality of deg(ξ).

To simplify notation, let p = p1 and π = π1. Since p and τ (p) are irreducible, we have π = [T /T p]
and τ (π) = [T /T τ (p)]. Hence, the equality π = τ (π) implies that T /T p ∼= T /T τ (p). Therefore,
by (3.1), there exist f , g ∈ T \ {0} with deg( f ) = deg(g) < deg(p) and

pf = gτ (p). (3.4)
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Suppose first that τ ( f ) = g . Then, pf = τ ( f )τ (p) = τ (pf ), so pf ∈ Στ (A), hence δ(pf ) ∈ Ω . Then,
δ( f ) = δ(pf ) − π ≡ −π (mod Ω). Therefore, δ( f ) is an effective divisor in Div(T )τ \ Ω with

deg
(
δ( f )

) = deg( f ) < deg(p) = deg(π) = deg(ξ).

This contradicts the minimality of deg(ξ). So, we must have τ ( f ) �= g .
Now suppose that τ ( f ) �= −g . Then, let f ′ = f + τ (g) ∈ T \ {0}, and g′ = τ ( f ′) = τ ( f ) + g . By

applying τ to (3.4), we have pτ (g) = τ ( f )τ (p), which when added to (3.4) yields pf ′ = g′τ (p). But
then the preceding argument for the case τ ( f ) = g applies for f ′ , as f ′ �= 0 and τ ( f ′) = g′; it shows
that δ( f ′) ∈ Div(T )τ \ Ω . Since

deg
(

f ′) � max
(
deg( f ),deg

(
τ (g)

)) = deg( f ) < deg(ξ),

this contradicts the minimality of deg(ξ).
We thus have τ ( f ) = −g while τ ( f ) �= g . Hence, char(D) �= 2. Since we have assumed τ |D �= id,

there is c ∈ D∗ with τ (c) = −c. Then,

pf c = gτ (p)c = c−1cgτ (p)c = c−1τ (pf c)c. (3.5)

Since τ (c) = −c, the map τ ′ = int(c−1) ◦ τ is a unitary involution on A with τ ′ ∼ τ . Hence,
by Lemma 2.1(a), Στ ′ (A) = Στ (A). Since Eq. (3.5) shows pf c = τ ′(pf c), we thus have pf c ∈
Στ ′ (A) = Στ (A), and hence δ(pf c) ∈ Ω . This shows that δ( f c) ≡ −π (mod Ω), and hence δ( f c) ∈
Div(T )τ \ Ω . But, δ( f c) is an effective divisor, with

deg
(
δ( f c)

) = deg( f ) < deg(π) = deg(ξ).

Thus, we have a contradiction to the minimality of deg(ξ). The contradiction arose from the assump-
tion that Ω � Div(T )τ . So, we must have Div(T )τ = Ω = δ(Στ (A)), as desired.

We have thus far assumed that τ |D �= id. Now, suppose that τ |D = id. Then, D must be commu-
tative, since τ is an antiautomorphism. Our hypothesis now is that T is noncommutative; there-
fore, σ = int(x)|D �= id. Since τ (Dx) = Dx, there is a nonzero d ∈ D with τ (dx) = ±dx. Then let
τ̃ = int(dx) ◦ τ , which is a unitary graded involution of T with τ̃ ∼ τ as unitary involutions on A.
Hence, Στ̃ (A) = Στ (A) by Lemma 2.1(a). Also, for any a ∈ A∗ ,

τ̃
(
δ(a)

) = δ
(
τ̃ (a)

) = δ
(
dxτ (a)(dx)−1)

= δ(dx) + δ
(
τ (a)

) − δ(dx) = δ
(
τ (a)

) = τ
(
δ(a)

)
.

Thus, τ̃ and τ have the same action on Div(T ). Furthermore, τ̃ |D = int(dx)|D = σ �= id. Therefore,
the preceding argument shows that the lemma holds for τ̃ . This yields for τ ,

δ(Στ (A)) = δ
(
Στ̃ (A)

) = Div(T )τ̃ = Div(T )τ .

Thus, the lemma holds in all cases. �
Remark. The assumption that τ |D �= id or T is noncommutative is definitely needed for Lemma 3.2.
For example, suppose that T is commutative and τ is defined by τ |D = id and τ (x) = −x. Then,
δ(x) ∈ Div(T )τ \ δ(Στ (A)).
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Now we combine the action of the graded unitary involution τ on Div(T ) with a finite group
action. Let H be a finite abelian group which acts on the set S of isomorphism classes of simple left
T -modules. This action induces an action of H on Div(T ), making Div(T ) into a permutation module
for H . There is an associated norm map NH : Div(T ) → Div(T ) given by NH (α) = ∑

h∈H hα. Suppose
the actions of H and τ on Div(T ) are related by

τ (hα) = h−1τ (α) for all h ∈ H, α ∈ Div(T ). (3.6)

Lemma 3.3. Let I H (Div(T )) = 〈hα − α | h ∈ H, α ∈ Div(T )〉 and also let Div(T )hτ = {α ∈ Div(T ) |
hτ (α) = α}. Then,

{
α ∈ Div(T )

∣∣ NH (α) = NH
(
τ (α)

)} = I H
(
Div(T )

) +
∑
h∈H

Div(T )hτ .

Proof. Let G be the semidirect product group H �ψ 〈τ 〉 built using the homomorphism ψ : 〈τ 〉 →
Aut(H) given by ψ(τ )(h) = h−1. (This is well defined as H is abelian.) More explicitly, G = H ∪ Hτ
(disjoint union), where the multiplication is determined by that in H together with τh = h−1τ and
τ 2 = 1. Note that G is a generalized dihedral group in the terminology of [2, §2.4] since every element
of G \ H has order 2. The hypothesis (3.6) shows that the actions of τ and H on Div(T ) combine
to yield a Z-linear group action of G on Div(T ). Also, G sends S to S , since this is true for H
and τ . Thus, Div(T ) is a permutation G-module. From this group action we build a new action of G
on Div(T ), denoted ∗, given by

h ∗ α = hα and (hτ ) ∗ α = −hτα for all h ∈ H, α ∈ Div(T ).

Let D̃iv(T ) denote Div(T ) with this twisted G-action, and let ÑG : D̃iv(T ) → D̃iv(T ) be the associ-
ated norm map, given by

ÑG(α) =
∑
h∈H

hα −
∑
h∈H

hτα = NH (α) − NH (τα) for all α ∈ Div(T ).

Thus, the lemma describes ker(ÑG).

Note that while Div(T ) is a permutation G-module, the twisted G-module D̃iv(T ) need not be
a permutation G-module, as the twisted action of G does not map S to itself. Write S = ⋃

j∈ J O j ,
where the O j are the distinct G-orbits of S (for the original G-action). Then, Div(T ) = ⊕

j∈ J M j ,
where each M j = ⊕

s∈O j
Zs, which is a G-submodule of Div(T ). Let O be one of the orbits, and let

M = ⊕
s∈O Zs. Take any s ∈ O, and let V = H · s, which is an H-orbit within O. Then, τ V = τ H · s =

Hτ · s, which is also an H-orbit in O, with V ∪ τ V = Hs ∪ τ Hs = Gs = O. Let V = {s1, . . . , sn}. There
are two possible cases:

Case I. V ∩ τ V = ∅. Then, {s1, . . . , sn,−τ (s1), . . . ,−τ (sn)} is a Z-base of M which is mapped to
itself by the ∗-action of G . Thus, M̃ (i.e., M with the twisted G-action) is a permutation G-module.
Consequently, Ĥ−1(G, M̃) = 0 (as is true for all permutation G-modules). This means that

ker(ÑG) ∩ M = IG(M̃) = 〈g ∗ m − m | g ∈ G, m ∈ M〉
= 〈hm − m,−hτm − m | h ∈ H, m ∈ M〉.

Each hm − m ∈ I H (M) ⊆ I H (Div(T )), while −hτm − m ∈ Mhτ ⊆ Div(T )hτ . Thus,

ker(ÑG) ∩ M ⊆ I H
(
Div(T )

) +
∑

Div(T )hτ .
h∈H
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Case II. V ∩ τ V �= ∅. Then, V = τ V , since they are each H-orbits. So, for each t ∈ V there is k ∈ H
with t = τk−1t = kτ t; so, t ∈ Mkτ . Thus,

ker(ÑG) ∩ M ⊆ M =
∑
h∈H

Mhτ ⊆
∑
h∈H

Div(T )hτ .

By combining the two cases, we obtain

ker(ÑG) =
∑
j∈ J

(
ker(ÑG) ∩ M j

) ⊆ I H
(
Div(T )

) +
∑
h∈H

Div(T )hτ .

This proves ⊆ in the lemma, and the reverse inclusion is clear. �
4. Proof of the theorem

We can now prove Th. 1.1.

Proof. Let E be a graded division ring (finite-dimensional over its center) with a unitary graded invo-
lution τ , and let Q = q(E). Because NrdQ |E = NrdE , as noted in Section 2, we have Σ ′

τ (E) ⊆ Σ ′
τ (Q ).

Also, clearly Στ (E) ⊆ Στ (Q ). Therefore, there is a canonical map ϕE : SK1(E, τ ) → SK1(Q , τ ). We will
show that ϕE is an isomorphism.

To see that ϕE is injective, give ΓE a total ordering making it into a totally ordered abelian group.
Then define a function λ : E \ {0} → E∗ as follows: For c ∈ E \ {0}, write c = ∑

γ ∈ΓE
cγ where each

cγ ∈ Eγ . Then set λ(c) = cε , where ε is minimal such that cε �= 0. It is easy to check that λ(cd) =
λ(c)λ(d) for all c,d ∈ E \ {0}. It follows that λ extends to a well-defined group epimorphism λ : Q ∗ →
E∗ given by λ(cz−1) = λ(c)λ(z)−1 for all c ∈ E \ {0}, z ∈ Z(E) \ {0}. Clearly λ|E∗ = id. Note that as τ
is a graded involution, we have λ(τ (c)) = τ (λ(c)) for all c ∈ E \ {0}, and hence for all c ∈ Q ∗ . Now
take any u ∈ Στ (Q ) ∩ E∗ . Then, u = s1 · · · sm for some si ∈ Q ∗ with each τ (si) = si . Then, u = λ(u) =
λ(s1) · · ·λ(sm) with τ (λ(si)) = λ(τ (si)) = λ(si); so, u ∈ Στ (E). This shows that Στ (Q ) ∩ E∗ ⊆ Στ (E).
Therefore, the canonical map ϕE is injective.

To show that ϕE is surjective, we will prove the following:

Σ ′
τ (Q ) = (

Σ ′
τ (Q ) ∩ E∗

0

) · Στ (Q ). (4.1)

Note that surjectivity of ϕE follows immediately from (4.1) because Σ ′
τ (Q ) ∩ E∗

0 ⊆ Σ ′
τ (E).

We next reduce to the case of a finitely-generated grade group. For any graded division algebra E,
observe that if � is a subgroup of ΓE , then E has the graded division subalgebra E� = ⊕

ε∈� Eε ,
which is finite-dimensional over its center with ΓE� = �. Let Q � = q(E�) ⊆ Q . Take any γ ∈ ΓZ(E)

such that τ |Z(E)γ �= id and any c1, . . . , cm ∈ E∗ such that the ci span E as a graded Z(E)-vector space.
Then, the ci also span Q as a Z(Q )-vector space. So, if � is any finitely-generated subgroup of ΓE

such that γ ∈ � and deg(c1), . . . ,deg(cm) ∈ �, then τ |E� is a unitary graded involution and the
map Q � ⊗Z(Q �) Z(Q ) → Q is surjective. This map is also injective, as its domain is simple since
Q � is central simple and finite-dimensional over Z(Q �). Therefore, [Q � : Z(Q �)] = [Q : Z(Q )], and
hence NrdQ � = NrdQ |Q � , so Σ ′

τ (Q �) = Σ ′
τ (Q )∩ Q ∗

� . Now, E = lim−→ E� and Σ ′
τ (Q ) = lim−→ Σ ′

τ (Q �) as
� ranges over finitely-generated subgroups of ΓE containing γ and deg(c1), . . . ,deg(cm); therefore,
equality (4.1) holds for E if it holds for each E� . Thus, it suffices to prove (4.1) for E with ΓE finitely-
generated.

Henceforward, suppose ΓE is a finitely generated, hence free, abelian group, say ΓE = Zγ1 ⊕
· · · ⊕ Zγn . Take any nonzero xi ∈ Eγi for i = 1,2, . . . ,n. Then, E = E0[x1, x−1

1 , . . . , xn, x−1
n ], an iterated

twisted Laurent polynomial ring over the division ring E0. We prove (4.1) by induction on n.
Suppose first that n = 1. Let D = E0 and x = x1, and let T be the graded subring of E generated

by D and x. So, T = D[x;σ ], a twisted polynomial ring, where σ = int(x). Then, σ |Z(D) has finite order
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since [Z(D) : Z(E)0] < ∞. To be consistent with the notation of Section 3, let A = q(T ) = q(E) = Q .
Since τ is a graded unitary involution on E, its restriction τ |T is a graded unitary involution on T .
Let Div(T ) and δ : A∗ → Div(T ) be as in Section 3. If T is commutative, then A is also commutative,
so SK1(A, τ ) = 1 and (4.1) holds trivially. Thus, we may assume that T is noncommutative. Take
any a ∈ Σ ′

τ (A). So, NrdA(a) = τ (NrdA(a)) = NrdA(τ (a)) by (2.3). Recall from [1, Remark 5.1(iv)] that
δ(NrdA(a)) = rδ(a), where r = ind(A). Hence,

rτ
(
δ(a)

) = rδ
(
τ (a)

) = δ
(
NrdA

(
τ (a)

)) = δ
(
NrdA(a)

) = rδ(a).

Then, τ (δ(a)) = δ(a), as Div(T ) is torsion-free. By Lemma 3.2, we have δ(a) = δ(b) for some
b ∈ Στ (A). It then follows from the exact sequence (3.2) that a = bcd for some c ∈ [A∗, A∗] and
d ∈ D∗ . Recall that [A∗, A∗] ⊆ Στ (A) by Lemma 2.1(b). So, bc ∈ Στ (A) ⊆ Σ ′

τ (A). Hence, d = (bc)−1a ∈
Σ ′

τ (A) ∩ D∗ , so a = (bc)d ∈ Στ (A)(Σ ′
τ (A) ∩ D∗). This proves the inclusion ⊆ in (4.1). The reverse

inclusion is clear. Thus, (4.1) holds when n = 1.
Now assume n > 1. By induction (4.1) holds for all graded division algebras with grade group of

rank less than n. Let x = x1 as above, and let

Z = Z(E);
D = E0;
T = D[x;σ ] ⊆ E where σ = int(x);
R = Z(T );
A = q(T );
B = A

[
x2, x−1

2 , . . . , xn, x−1
n ;σ2, . . . , σn

] ⊆ Q where σi = int(xi);
C = Z(B).

For a clearer picture of B and C, let U = E0[x, x−1;σ ], which is a graded division subalgebra of E
with U0 = E0, ΓU = Zγ1, and q(U) = A. Let F = U ∩ Z, which is a graded field with F0 = Z0 and
ΓF = ΓZ ∩ ΓU . So,

|ΓU : ΓF| = |ΓE ∩ Zγ1 : ΓZ ∩ Zγ1| � |ΓE : ΓZ| < ∞,

hence [U : F] = [U0 : F0]|ΓU : ΓF| = [E0 : Z0]|ΓU : ΓF| < ∞. Since F is central in U, we have
A = q(U) = q(F) ⊗F U. Hence, B = q(F) ⊗F E, so C = Z(B) = q(F) ⊗F Z, from which it is clear that the
rank of B as a free C-module equals [E : Z], which is finite. Let

E′ = U
[
x2, x−1

2 , . . . , xn, x−1
n ;σ2, . . . , σn

] = E,

but we grade E′ so that E′
0 = U, ΓE′ = Zγ2 ⊕ · · · ⊕ Zγn , and E′

ε = ⊕
j∈Z

E jγ1+ε , for each ε ∈ ΓE′ .
Now, B is obtained from E′ by inverting nonzero elements of F, which are all central in E′ and
homogeneous of degree 0. So, the grading on E′ extends to a grading on B with B0 = A and ΓB =
ΓE′ = Zγ2 ⊕ · · · ⊕ Zγn; this grading restricts to a grading on C = Z(B). Note that B is a graded
division ring since B0 = A is a division ring and each homogeneous component Bε of B contains
a unit of B (namely any nonzero homogeneous element of E in Bε). We saw above that [B : C] < ∞.
Also, q(B) = Q , as E ⊆ B ⊆ Q = q(E). Our unitary involution τ is a graded involution for E, so also
a graded involution for E′ , hence also a graded involution for B. Moreover, τ is a unitary involution
for B, as τ |Z �= id and Z = Z(E) ⊆ B ∩ Z(Q ) ⊆ Z(B). Since ΓB has Z-rank n − 1, (4.1) holds for τ on B
by induction, i.e.

Σ ′
τ (Q ) = (

Σ ′
τ (Q ) ∩ A∗) · Στ (Q ).
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Therefore, to prove (4.1) for E, it suffices to prove

Σ ′
τ (Q ) ∩ A∗ ⊆ (

Σ ′
τ (Q ) ∩ D∗) · Στ (Q ). (4.2)

For this, we will work with Div(T ) and the action on it by τ and various automorphisms. Note
that while τ is unitary as an involution on B, its restriction to A need not be unitary. But, if τ |A is
not unitary, then τ |Z(A) = id, so τ |C0 = id, hence C is totally ramified over Cτ , i.e., C0 = (Cτ )0. But
then SK1(B, τ ) = 1 by [2, Th. 4.5]. So, SK1(Q , τ ) = SK1(B, τ ) = 1 since (4.1) holds for B, whence (4.2)
and (4.1) for E obviously hold. Thus, we will assume from now on that τ |A is unitary.

Assume that T is not commutative.
Since B is a graded division algebra and C = Z(B), it is known (see Section 2) that Z(B0) is Galois

over C0, and there is a well-defined epimorphism θB : ΓB → G(Z(B0)/C0) given by ε 
→ int(bε)|Z(B0)

for any nonzero bε in Bε . Here, B0 = A. Let H = G(Z(A)/C0), which is abelian, as θB is surjective.
We next define a group action of H on Div(T ) so as to be able to use Lemma 3.3.

We use the notation associated to T and Div(T ) as in Section 3, including the epimorphism
δ : A∗ → Div(T ). Observe that conjugation by an element of E∗ yields a degree preserving automor-
phism of T , and hence a well-defined automorphism of Div(T ). That is, for any y ∈ E∗ and a ∈ A∗ ,
define

y · δ(a) = δ
(

yay−1). (4.3)

This is well defined because ker(δ) = [A∗, A∗]D∗ (see (3.2)), which int(y) maps to itself. For any
irreducible p of the twisted polynomial ring T , its conjugate ypy−1 is also irreducible in T , and
y · [T /T p] = y · δ(p) = [T /T ypy−1]. Hence, the action of y maps the distinguished Z-base S of
Div(T ) to itself. Therefore, the group action of E∗ on Div(T ) given by (4.3) makes Div(T ) into a
permutation E∗-module. Note that if u ∈ E∗ and int(u)|Z(A) = id, then by Skolem–Noether there is
c ∈ A∗ with int(u)|A = int(c). Then, for a ∈ A,

u · δ(a) = δ
(
cac−1) = δ(c) + δ(a) − δ(c) = δ(a), (4.4)

so u acts trivially on Div(T ). Now, for any y ∈ E∗ , we have τ ◦ int(y) ◦ τ ◦ int(y) = int(τ (y)−1 y).
Since τ preserves degrees, we have τ (y)−1 y ∈ E0 = D ⊆ A, hence int(τ (y)−1 y)|Z(A) = id. Therefore,
(4.4) with u = τ (y)−1 y shows that τ yτ y · α = α for all α ∈ Div(T ), i.e.,

τ y · α = y−1τ · α. (4.5)

We obtain from the E∗-action an induced action of H on Div(T ): For any h ∈ H , choose any yh ∈ E∗
such that int(yh)|Z(A) = h. (Such a yh exists because the composition E∗ → B∗ → ΓB is surjective, as
is θB : ΓB → H .) Then, for α ∈ Div(T ), set h · α = yh · α. If we had made a different choice of yh ,
say y′

h , then as int(y′−1
h yh)|Z(A) = h−1h = id, the calculation in (4.4) shows that y′

h · α = yh · α for all
α ∈ Div(T ). Thus, the action of H on Div(T ) is well defined, independent of the choice of the yh .
So, Div(T ) is a permutation H-module, and from (4.5), we have τh · α = h−1τ · α for all h ∈ H and
α ∈ Div(T ). Therefore, Lemma 3.3 applies for the norm map NH of H on Div(T ). We interpret the
terms appearing in that lemma: First,

I H
(
Div(T )

) = δ
([

E∗, A∗]). (4.6)

For, to see ⊆, take any generator h · β − β of I H (Div(T )), and take any b ∈ A∗ with δ(b) = β . Then,

h · β − β = δ
(

yhby−1) − δ(b) = δ
(

yhby−1b−1) ∈ δ
([

E∗, A∗]).
h h
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For the reverse inclusion, take any z ∈ E∗ and a ∈ A∗ . Let h = int(z)|Z(A) . Since we could have chosen z
for yh , we have

δ
(
zaz−1a−1) = δ

(
zaz−1) − δ(a) = h · δ(a) − δ(a) ∈ I H

(
Div(T )

)
.

This proves (4.6).
For any h ∈ H , we have selected yh ∈ E∗ so that int(yh)|Z(A) = h. For any d ∈ D = E0, we have

int(dyh)|Z(A) = int(yh)|Z(A) . Since Edeg(yh) = E0 yh , the graded involution τ maps E0 yh to itself.
Hence, there is dh ∈ E0 with τ (dh yh) = ±dh yh . Then, replace yh by dh yh , and set τh = int(yh) ◦ τ .
Since τ (yh) = ±yh , the map τh is a unitary graded involution on E with τh ∼ τ on E. So, τh restricts
to a graded involution on T . If τh|T is not unitary, then τh|A is not unitary, so SK1(Q , τh) = 1 by
the same argument as given above for τ . But, SK1(Q , τh) = SK1(Q , τ ) as τh ∼ τ by Lemma 2.1(a),
and the triviality of SK1(Q , τ ) implies (4.2) and (4.1). Thus, we are done if any τh|A is not unitary.
We therefore assume that each τh|A is unitary, so τh|T is a graded unitary involution. Since the action
of τh on Div(T ) coincides with that of hτ , Lemma 3.2 yields

Div(T )hτ = δ
(
Στh (A)

)
for each h ∈ H . (4.7)

(The lemma applies because we are assuming that T is noncommutative.)
We now prove (4.2). For this, take any a ∈ Σ ′

τ (Q ) ∩ A∗ , and let α = δ(a). Since A = B0 and
Q = q(B), the norm formula (2.2) yields

NrdQ (a) = N Z(A)/C0

(
NrdA(a)

)λ
where λ = ind(Q )/

([
Z(A) : C0

] · ind(A)
)
.

Note that N Z(A)/C0 is just the norm map NH for the H-module Z(A). Here, Div(T ) and Div(R) are
also H-modules, and the maps δR : Z(A) → Div(R) and DNrd : Div(T ) → Div(R) in diagram (3.3)
are H-equivariant. This follows from Lemma 3.1 since for h ∈ H the action of h on Z(A), Div(R),
and Div(T ) is induced via int(yh), which is a graded automorphism of T . Therefore, δR and DNrd
commute with the norm maps NH on Z(A), Div(R), and Div(T ). Thus, for α = δ(a) we have, using
commutative diagram (3.3),

δR
(
NrdQ (a)

) = δR
(
N Z(A)/C0

(
NrdA(a)

)λ) = λδR NH
(
NrdA(a)

)
= λNHδR

(
NrdA(a)

) = λNH
(
DNrd δ(a)

) = λDNrd
(
NH (α)

)
.

Since a ∈ Σ ′
τ (Q ), we have NrdQ (a) = NrdQ (τ (a)). Thus,

λDNrd
(
NH (α)

) = δR
(
NrdQ (a)

)
= δR

(
NrdQ

(
τ (a)

)) = λDNrd
(
NH

(
τ (α)

))
. (4.8)

But, Div(R) is a torsion-free Z-module, and DNrd is injective by [1, Prop. 5.4]. Therefore, Eq. (4.8)
yields NH (α) = NH (τ (α)). By Lemma 3.3 and (4.6) and (4.7), we thus have

α ∈ I H
(
Div(T )

) +
∑
h∈H

Div(T )hτ = δ
([

E∗, A∗]) +
∑
h∈H

δ
(
Στh (A)

)
.

Hence, there exist b ∈ [E∗, A∗] and ch ∈ Στh (A) for each h ∈ H with

δ(a) = δ(b) +
∑

δ(ch) = δ

(
b

∏
ch

)
.

h∈H h∈H
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Then, as ker(δ) = [A∗, A∗]D∗ , there exist d ∈ D∗ and e ∈ [A∗, A∗] such that a = deb
∏

h∈H ch . Let
q = eb

∏
h∈H ch . Since [A∗, A∗] ⊆ Στ (Q ) by Lemma 2.1, we have eb ∈ Στ (Q ). But also, each

ch ∈ Στh (A) ⊆ Στh (Q ) = Στ (Q ), with the last equality given by Lemma 2.1(a), since τh ∼ τ as in-
volutions on Q . Hence, q ∈ Στ (Q ) ⊆ Σ ′

τ (Q ). So, d = aq−1 ∈ D∗ ∩ Σ ′
τ (Q ), whence a ∈ (Σ ′

τ (Q ) ∩ D∗) ·
Στ (Q ). This proves (4.2), under the assumption that T is noncommutative.

There remains the case where T is commutative. Suppose that int(x j)|D �= id for some j > 1. Then,
we can rearrange the order of the xi , viewing the order of generators of E as x j, x2, . . . , x j−1, x1, x j+1,

. . . , xn (and their inverses). Then, we have T = D[x j], which is not commutative. So, we are back to
the previously proved case; hence, (4.2) holds.

The final possibility is that each D[x j] is commutative for j = 1,2, . . . ,n, i.e., D ⊆ Z(E). So, for each
h ∈ H , we have τh|D = int(yh)|D ◦ τ |D = τ |D . In the basic argument for (4.2), we used the assumption
that T is noncommutative only to be able to apply Lemma 3.2 for each τh . Now T is commutative,
but if τ |D �= id then also each τh|D �= id, so Lemma 3.2 still applies for each τh; then the preceding
argument for (4.2) again goes through. Thus, we may assume that τ |D = id. (Hence, E0 = (Z(Eτ ))0,
which implies that SK1(E, τ ) = 1 by [2, Th. 4.5]. But, we are not finished because we do not know that
SK1(Q , τ ) = 1.) For any y ∈ E∗ , we have τ (y) = cy for some c ∈ E∗

0 = D∗ , as each Eγ is a τ -stable
1-dimensional E0-vector space. Then y = τ (cy) = c2 y, so c2 = 1. Thus, τ (y) = ±y for each y ∈ E∗ .
If τ (x1) = x1, then τ |A = id, which we saw earlier implies SK1(Q , τ ) = SK1(B, τ ) = 1, which trivially
implies (4.2). Thus, we may assume that τ (x1) = −x1. Likewise, we may assume that τ (x j) = −x j for
each j. For, if τ (x j) = x j , then after reordering the generators of E by interchanging x1 and x j , we have
A = D(x j), so again τ |A = id and SK1(Q , τ ) = 1. Similarly, we are done if τ (x1x2) = x1x2. For, we can
then replace x1 by x1x2 as a generator of E, as ΓE = Z(γ1 + γ2) ⊕ Zγ2 ⊕ · · · ⊕ Zγn . Then A = D(x1x2)

and τ |A = id, showing SK1(Q , τ ) = 1, as before. Thus, we may assume that τ (x1x2) = −x1x2. Then,
x2x1 = (−1)2τ (x1x2) = −x1x2. Likewise, by reordering the xi , we are done if τ (xi x j) = xi x j for any
distinct i and j. So, we may assume that τ (xi x j) = −xi x j , and hence x j xi = −xi x j , whenever i �= j.
If n � 3, we then find that τ (x1x2x3) = x1x2x3. In this case, we can replace x1 by x1x2x3 as a generator
of E, as ΓE = Z(γ1 +γ2 +γ3)⊕Zγ2 ⊕· · ·⊕Zγn . Then, A = D(x1x2x3), and τ |A = id, so SK1(Q , τ ) = 1,
as before. The remaining case is that n = 2, D is central in E, τ |D = id, τ (xi) = −xi for i = 1,2,
and x2x1 = −x1x2. But then, Z(E) = D[x2

1, x2
2] and τ |Z(E) = id, which is a contradiction as τ is unitary.

Thus, in all cases that can occur (4.2) holds, so also (4.1). Hence, SK1(Q , τ ) = SK1(E, τ ), as desired. �
Here is a quick consequence of the theorem:

Corollary 4.1 (Stability Theorem). (See [10].) Let D be a division algebra finite-dimensional over Z(D), and let
τ be a unitary involution on D. Then, SK1(D, τ ) ∼= SK1(D(x), τ ′), where D(x) is the rational division algebra
over D and τ ′ is the canonical extension of τ to D(x), with τ ′(x) = x.

Proof. Let E = D[x, x−1], the (untwisted) Laurent polynomial ring in one variable over D . Then,
E is a graded division algebra with E0 = D , ΓE = Z, and E j = Dx j for all j ∈ Z. Also, q(E) = D(x)
and Z(E) = Z(D)[x, x−1], so [E : Z(E)] = [D : Z(D)] < ∞. The extension τ ′ of τ to D(x) clearly re-
stricts to a unitary graded involution on E. Note that E∗ = ⋃

j∈Z
D∗x j . For d ∈ D∗ and j ∈ Z, we

have τ ′(dx j) = τ (d)x j and NrdE(dx j) = NrdD(d)xmj , where m = ind(D(x)) = ind(D). It follows that
Σ ′

τ ′ (E) = ⋃
j∈Z

Σ ′
τ (D)x j and Στ ′ (E) = ⋃

j∈Z
Στ (D)x j , showing that SK1(E, τ ′) ∼= SK1(D, τ ). (This is a

special case of the result in [2, Cor. 4.10] that if E is a graded division algebra with unitary graded
involution τ , and ΓE = ΓZ(E)τ , then SK1(E, τ ) ∼= SK1(E0, τ |E0 ).) Since SK1(E, τ ′) ∼= SK1(D(x), τ ′) by
Th. 1.1, we have SK1(D(x), τ ′) ∼= SK1(D, τ ). �
5. Examples

Here are a few examples of SK1(Q , τ ) that follow from known results about SK1(E, τ ).
For a field K containing a primitive n-th root of unity ω (n � 2) and any a,b ∈ K ∗ , let ( a,b

K )ω
denote the degree n symbol algebra over K with generators i, j and relations in = a, jn = b, and
i j = ω ji. Note that if K has a nonidentity automorphism η such that η2 = id and η(ω) = ω−1 and
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if η(a) = a and η(b) = b, then ( a,b
K )ω has a unitary involution τ satisfying τ (cik j�) = j�ikη(c) for all

c ∈ K , k, � ∈ Z.

Example 5.1. Let r1, . . . , rm be integers with each ri � 2, let s = lcm(r1, . . . , rm) and let n = r1 · · · rm .
Let L be a field containing a primitive s-th root of unity ω, and suppose L has an automorphism
η of order 2 such that η(ω) = ω−1. (For example, take L = C and η to be complex conjugation.)
Let K = L(x1, . . . , x2m), a rational function field over L. For k = 1,2, . . . ,m, let ωk = ωs/rk , which is a
primitive rk-th root of unity in L. Let

Q =
(

x1, x2

K

)
ω1

⊗K . . . ⊗K

(
x2m−1, x2m

K

)
ωm

.

So, Q is a division algebra over K of exponent s and index n. Extend η to an automorphism of
order 2 of K by setting η(x�) = x� for � = 1,2, . . . ,2m. Each symbol algebra (

x2k−1,x2k
K )ωk has a unitary

involution τk as described above, with τk|K = η. Let τ = τ1 ⊗ · · · ⊗ τm : Q → Q . Since the τk all agree
on K , this τ is a well-defined unitary involution on Q . Let μ�(L) denote the group of all �-th roots
of unity in L. Then,

SK1(Q , τ ) ∼= {
c ∈ L∗ ∣∣ η(

cn) = cn}/{c ∈ L∗ ∣∣ η(
cs) = cs}

∼= {
ξ ∈ μn(L)

∣∣ η(ξ) = ξ−1}/μs(L). (5.1)

For, let Z = L[x1, x−1
1 , . . . , x2m, x−1

2m], the (commutative) iterated Laurent polynomial ring over L, with

its usual multigrading in x1, . . . , x2m; that is, ΓZ = Z2m with Z(k1,...,k2m) = Lxk1
1 · · · xk2m

2m . Then, Z is a
graded field. Let E be the tensor product of graded symbol algebras,

E =
(

x1, x2

Z

)
ω1

⊗Z · · · ⊗Z

(
x2m−1, x2m

Z

)
ωm

.

Then, the grading on Z extends to a grading on E, with deg(ik) = 1
rk

deg(x2k−1) and deg( jk) =
1
rk

deg(x2k), where ik and jk are the standard generators for (
x2k−1,x2k

Z )ωk . Then, E is a graded divi-
sion algebra with center Z, and E is totally ramified over Z, i.e., E0 = L = Z0. Clearly q(Z) = K and
q(E) = E ⊗Z q(Z) = Q , and τ restricts to a unitary graded involution on E. Thus, SK1(Q , τ ) ∼= SK1(E, τ )

by Th. 1.1, and formula (5.1) follows from the corresponding formula for SK1(E, τ ) given in [2, Th. 5.1],
as E is totally ramified over Z (i.e., E0 = Z0) and Z is unramified over Zτ .

Let F ⊆ K ⊆ N be fields with N Galois over K , K Galois over F , and [K : F ] = 2. Let Br(K ) denote
the Brauer group of K , and let Br(N/K ) denote the relative Brauer group ker(Br(K ) → Br(N)). Let

Br(N/K ; F ) = {[A] ∈ Br(N/K )
∣∣ corK→F [A] = 1

}
,

where corK→F is the corestriction mapping Br(K ) to Br(F ). Recall that the theorem of Albert-Riehm
says that Br(N/K ; F ) consists of the classes of central simple K -algebras A such that N splits A and
A has a unitary involution τ such that K τ = F (see [5, Th. 3.1, p. 31]). Suppose N is a cyclic Galois
extension of K with [N : K ] = n and G(N/K ) = 〈σ 〉. For b ∈ K ∗ , let (N/K , σ ,b) denote the cyclic
algebra

(N/K ,σ ,b) =
n−1⊕

N yi, where yc = σ(c)y for all c ∈ K and yn = b.
i=0
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Let η be the nonidentity F -automorphism of K . Suppose further that N is Galois over F and N/F
is dihedral. That is, suppose there exists ρ ∈ G(N/F ) with ρ|K = η, ρ2 = idN , and ρσρ−1 = σ−1. So,
G(N/F ) = 〈σ ,ρ〉, and this group is dihedral if n � 3. Observe that when N/F is dihedral, if b ∈ F ∗ ,
then (N/K , σ ,b) has a unitary involution τ given by τ (cyi) = yiρ(c) for all c ∈ K , i ∈ Z. Note that
τ |K = η, so K τ = F and [(N/K , σ ,b)] ∈ Br(N/K ; F ).

Example 5.2. Let F ⊆ L be fields with [L : F ] = 2 and L Galois over F with G(L/F ) = {idL, η}. Let
N1 and N2 be cyclic Galois extensions of L which are linearly disjoint over L with each Ni dihedral
over F as just described. Let n j = [N j : L] and let G(N j/L) = 〈σ j〉; extend each σ j to N1N2 so that
σ1|N2 = idN2 and σ2|N1 = idN1 . Let K = L(x1, x2), a rational function field over L, and extend η to K
by η(xi) = xi for i = 1,2 and likewise extend the σ j to N1N2 K by σ j(xi) = xi for j = 1,2, i = 1,2. Let

Q = (N1 K/K ,σ1, x1) ⊗K (N2 K/K ,σ2, x2),

which is a division algebra over K with exponent lcm(n1,n2) and degree n1n2. As noted above, each
(N j K/K , σ j, x j) has a unitary involution τ j with τ j |K = η. Let τ = τ1 ⊗ τ2, which is a unitary involu-
tion on Q . Then,

SK1(Q , τ ) ∼= Br(N1N2/L; F )/
[
Br(N1/L; F ) · Br(N2/L; F )

]
. (5.2)

It was shown in [11] that the right expression in (5.2) can be made into any finite abelian group
by choosing L to be an algebraic number field and suitably choosing N1 and N2. To view Q as a
ring of quotients, first take Z = L[x1, x−1

1 , x2, x−1
2 ] ⊆ K , so Z is a commutative twice-iterated Lau-

rent polynomial ring over L, and we give Z its usual grading by multi-degree in x1 and x2, as
in the preceding example. Let E = N1N2[y1, y−1

1 , y2, y−1
2 ] ⊆ Q , where y1 and y2 are the stan-

dard generators of the symbol algebras of Q . This E is a twisted iterated Laurent polynomial ring
with yn1

1 = x1, yn2
2 = x2, y1 y2 = y2 y1 and for all c ∈ N1N2, y1c = σ1(c)y1 and y2c = σ2(c)y2.

We extend the grading on Z = Z(E) to E by setting deg(y1) = ( 1
n1

,0) and deg(y2) = (0, 1
n2

); so,

ΓE = 1
n1

Z × 1
n2

Z. We can see that E is a graded division algebra by noting that E0 = N1N2, a field,
and each homogeneous component Eγ of E is a 1-dimensional E0-vector space containing a unit
of E. This E is semiramified since [E0 : Z0] = [N1N2 : L] = n1n2 = |ΓE : ΓZ|; indeed, it is decompos-
ably semiramified in the terminology of [7], since E = (N1Z/Z, σ1, x1) ⊗Z (N2Z/Z, σ2, x2) which ex-
presses E as a tensor product of semiramified graded cyclic algebras. Since τ on Q clearly restricts
to a unitary graded involution on E (recall that τ (y1) = y1 and τ (y2) = y2), Th. 1.1 shows that
SK1(Q , τ ) ∼= SK1(E, τ ). But further, let K ′ = L((x1))((x2)), a twice-iterated Laurent power series field
over L, and let D = (N1 K ′/K ′, σ1, x1) ⊗K ′ (N2 K ′/K ′, σ2, x2), which is a central simple division algebra
over K ′ . Then, the standard rank 2 Henselian valuation v on K ′ has associated graded ring gr(K ′) = Z,
and for the unique extension of v to D we have gr(D) = E. Because each N j K ′ is dihedral over
F ((x1))((x2)), there is a unitary involution τ̂ on D built just as for τ on Q . This τ̂ is compatible with
the valuation on D , and the involution on E induced by τ̂ is clearly τ . Thus, SK1(E, τ ) ∼= SK1(D, τ̂ )

by (1.1) above. But SK1(D, τ̂ ) was computed in [9, Th. 5.6] (with another proof given in [7, Th. 7.1(ii)]),
and the formula given there combined with the isomorphisms stated here yield (5.2).
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