ПРОЕКТНОЕ МОДЕЛИРОВАНИЕ СТРУКТУРЫ ПРОИЗВОДСТВЕННОЙ СИСТЕМЫ С ПАРАЛЛЕЛЬНО-ПОСЛЕДОВАТЕЛЬНОЙ ОРГАНИЗАЦИЕЙ

А. В. Клименко, В. С. Смородин

Гомельский государственный университет Гомель, Беларусь E-mail: smorodin@gsu.by

Рассматриваются способ формализации, метод проектного моделирования и программные средства автоматизации построения имитационных моделей управляемых производственных систем с вероятностными параметрами их функционирования при наличии элементов потенциальной опасности. В основу разработки метода положена динамическая имитационная модель, структура которой может изменяться в процессе моделирования.

Ключевые слова: управляемая производственная система, способ формализации, метод исследования, средства автоматизации моделирования.

АНАЛИЗ РАЗВИТИЯ СИСТЕМ МОДЕЛИРОВАНИЯ

В настоящее время в мире разработано и используется более семисот систем моделирования, обладающих удобством и быстротой моделирования (GPSS, Q-GERT, GASP IV, SIMULA 67, C++ Sim и др.), они требуют от пользователя основательных знаний языков программирования и обеспечивают меньше возможностей по сравнению с универсальными языками программирования. С другой стороны, использование при разработке имитационных моделей проблемно-ориентированных систем и средств моделирования, которых насчитывается всего несколько десятков, не требует от пользователя знаний языков программирования, однако эти системы и средства позволяют моделировать лишь относительно узкие классы сложных динамических систем.

Эти и некоторые другие проблемы обусловили новую фазу развития имитационного моделирования, связанную с построением гибких систем, позволяющих имитировать результаты человеческой деятельности при принятии решений [1]. Вместе с тем использование существующих в настоящее время систем моделирования и средств автоматизации построения имитационных моделей сталкивается с рядом трудностей и проблем:

- 1. Предлагаемые средства являются узкоспециализированными.
- 2. Подобные средства по-прежнему остаются малодоступными и дорогостоящими.

Приведенное выше краткое состояние проблемы исследования сложных технических систем показывает актуальность совершенствования существующих и разработки новых методов и средств для производственных систем с вероятностными характеристиками их функционирования в области их исследования, анализа и проектного моделирования.

МЕТОД И СРЕДСТВА ИССЛЕДОВАНИЯ УПРАВЛЯЕМЫХ ПРОИЗВОДСТВЕННЫХ СИСТЕМ

Целью данной работы является построение математических моделей управляемых производственных систем (УПС) с вероятностными параметрами их функционирования при наличии элементов потенциальной опасности, учитывающих вероятностные характеристики используемого оборудования; разработка метода их исследования на стадии проектирования и эксплуатации, а также разработка алгоритмов программной реализации методов исследования.

Для достижения цели работы были поставлены следующие задачи:

- 1. Разработать формальную модель, описывающую динамику состояний компонентов управляемой производственной системы при наличии элементов потенциальной опасности.
- 2. Разработать метод решения задач проектного моделирования управляемых производственных систем, позволяющий исследовать динамику функционирования компонентов системы с учетом надежности используемого оборудования и операций резервирования.
- 3. Разработать методику проектного моделирования УПС при проектировании объектов, представляющих повышенную опасность.
- 4. Разработать алгоритмы и программное обеспечение для проектного моделирования технологических процессов с вероятностными параметрами их функционирования.
- 5. Выполнить апробацию метода и технологии проектного моделирования для решения задач проектирования УПС при наличии элементов потенциальной опасности.

Актуальность решения поставленных задач определяется следующими факторами:

- 1. Многообразием сложных технологических систем управления, в ходе реализации которых могут изменяться параметры их функционирования и структура технологического цикла управления.
- 2. Необходимостью определения рациональной структуры технологического цикла с учетом текущих значений используемых ресурсов и начального состояния системы в режиме реального времени.
- 3. Сложностью возникающих практических задач при оценке уровня надежности и безопасности потенциально опасных промышленных объектов.
- 4. Необходимостью учета влияния человеческого фактора при выполнении работ на потенциально опасных промышленных объектах.

Принимая во внимание важность проблемы повышения уровня надежности и безопасности технических объектов, в частности, обеспечивающих экономическую безопасность республики, разработка метода и средств исследования управляемых производственных систем на стадии проектирования объектов с элементами повышенной опасности является актуальной с научной и практической точек зрения.

Способ формализации функционирования УПС выполнен на основе использования вероятностных сетевых графиков. Алгоритм функционирования УПС описывается на основе сочетания аппарата сетевого планирования, процедуры Монте-Карло и агрегатного способа имитации [2].

В отличие от известных приведенный способ формализации, позволяет учитывать текущие значения используемых ресурсов и состояние технологической системы в режиме модельного времени в зависимости от сложившейся операционной обстановки.

Предполагается, что до начала исследования имеется содержательное описание УПС, в котором указаны все связи компонентов системы с оборудованием. Метод реализуется в 3 стадии: проектирование технологом структуры УПС и отладка сопряжения УПС с оборудованием; построение имитационной модели (ИМ) УПС, которая входит в качестве составного компонента функционирования человекомашинного комплекса управления производственной системы; проектное моделирование рациональной структуры УПС при наличии условий потенциальной опасности.

Особенности разработанного метода состоят в следующем: поэтапное применение агрегатного способа формализации; построение имитационной модели управляемой производственной системы; испытание имитационных моделей динамики управления оборудованием вероятностного технологического процесса; разработка и эксплуатация типовых имитационных моделей управляемых производственных систем [3, 4].

Технология разработки программно-технологических средств имитации заключается в реализации следующих стадий проектного моделирования УПС.

На стадии 1 проектирования структуры УПС проводится натурный эксперимент (НЭ), в ходе которого осуществляется отладка ИМ УПС на основе программных средств проведения натурного эксперимента;

Для реализации стадии 2 проектного моделирования структуры технологического цикла необходимо разработать комплекс обеспечения имитационного эксперимента

Для реализации стадии 3 проектного моделирования УПС необходимо разработать комплекс оперативного управления динамикой функционирования устройств оборудования УПС.

АПРОБАЦИЯ МЕТОДА И СРЕДСТВ ИССЛЕДОВАНИЯ

По результатам апробации установлено следующее:

- 1. Вероятность аварии на устройствах оборудования близка к нулю во всех проведенных экспериментах на модели благодаря своевременному переключению устройств оборудования на резерв.
- 2. Определена нижняя граница состава ресурсов, при которой еще сохраняется параллельно-последовательный характер запуска агрегатами синхронизации агрегатов-исполнителей функций управления ПС.
- 3. Выполнена оценка влияния параметров надежности оборудования УПС на отклики имитаторов.
- 4. Определены суммарные расходы материалов, комплектующих изделий, стоимости выполнения технологических операций за время имитации одного взаимодействия УПС и имитатора УПС.
- 5. Установлены допустимые диапазоны изменения ресурсов УПС, при которых, в случае безотказной работы устройств оборудования, возможно успешное завершение технологического цикла.
- 6. Определено среднее время цикла имитации, при котором исполнительные элементы УПС успевают обслужить сигналы средств аппаратного сопряжения с УПС

и послать управляющие сигналы на устройства оборудования УПС до поступления новых внешних воздействий.

7. Оценено влияние отказов устройств оборудования на интегральные отклики.

ЗАКЛЮЧЕНИЕ

Разработана алгоритмическая модель, основанная на использовании расширенного состава параметров моделирования технологического цикла и позволяющая формализовать динамику функционирования производственных систем с вероятностными параметрами. Преимуществом предложенной формализации является расширение пространства параметров моделирования, которые представляют собой сочетание вероятностных и детерминированных переменных, что дает возможность обеспечить проведение регламентных и профилактических работ на основании текущих значений интенсивности сбоев оборудования.

Разработан метод моделирования вероятностных производственных систем, основанный на формализации динамики взаимодействия компонентов технологического цикла с параллельно-последовательной организацией, что обеспечивает возможность корректировки последствий отказов оборудования с использованием зарезервированных технологических операций.

Разработана методика решения задач проектного моделирования производственных систем с вероятностными параметрами их функционирования в условиях потенциальной опасности, учитывающая возможности возникновения аварийных ситуаций, что позволяет проектировать рациональную структуру технологического цикла на основании учета изменения технологической схемы реализации производственной системы с помощью операций резервирования.

Предложены принципы построения программных средств, разработаны программные модули и алгоритмы для решения задач построения рациональной структуры производственных систем, позволяющие учитывать надежностные характеристики функционирования используемого оборудования на стадии проектирования объектов исследования.

ЛИТЕРАТУРА

- 1. *Клименко*, *A. В.* Способ исследования производственных систем с последовательной организацией технологического цикла / А. В. Клименко // Математичні машини і системи (Mathematical Machines and Systems). 2009. № 2. С.122–128.
- 2. *Клименко, А. В.* Имитационное моделирование вероятностных производственных систем / А. В. Клименко, А. Н. Гончаров, О. М. Демиденко, И. В. Максимей, В. С. Смородин // Математические машины и системы. № 2. 2009. С.113–116.
- 3. *Смородин, В. С.* О развитии метода пошаговой реструктуризации для исследования вероятностных технологических процессов с последовательной организацией / В. С. Смородин, А. Н. Гончаров, А. В. Клименко // Доклады БГУИР. 2010. № 2(44). С. 74–76.
- 4. *Смородин, В. С.* Система контроля имитации технологических процессов с вероятностными параметрами их функционирования // В. С. Смородин, А. Н. Гончаров, А. В. Жигарь, А. В. Клименко // Проблемы физики, математики и техники. № 1 (2). 2010. С. 56–62.