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INVARIANT STRUCTURES ON THE 6–DIMENSIONAL

GENERALIZED HEISENBERG GROUP

VITALY V. BALASHCHENKO

Abstract. In this paper, using the theory of canonical structures on homogeneous
k–symmetric spaces, we construct four left-invariant metric f–structures on the 6–
dimensional generalized Heisenberg group. It provides new invariant examples for
the classes of nearly Kähler and Hermitian f–structures as well as almost Hermitian
G1–structures.

1. Introduction

An important role among homogeneous manifolds of Lie groups is occupied by

homogeneous k-symmetric spaces, that is, the homogeneous spaces generated by Lie

groups automorphisms Φ of order k (Φk = id) [17]. The remarkable feature of these

spaces is that any homogeneous k-symmetric space (G/H, Φ) admits a natural as-

sociated object, the commutative algebra A(θ) [4] of canonical affinor structures.

This algebra contains well-known classical structures, such as almost complex struc-

tures, almost product structures, f–structures of K. Yano (f 3 + f = 0), h–structures

(h3−h = 0) (see [4], [8]). It should be noted that certain homogeneous manifolds G/H

can be generated by different automorphisms of the Lie group G. This fact implies

a good opportunity to construct different invariant canonical structures on the same

underlying G/H. In particular, some Lie groups can be considered as homogeneous

k–symmetric spaces for different orders k ≥ 2 (see, for example, [17], [21]).
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In the paper, we apply this idea to construct different f–structures and almost com-

plex structures on the 6–dimensional generalized Heisenberg group (N, g). It should

be mentioned that the group (N, g) possesses many remarkable properties (see for

details [14], [15], [21] and others). Specifically, this group can be simultaneously rep-

resented as homogeneous k–symmetric spaces for k = 3, 4, and 6. We concentrate

on the four left-invariant metric canonical f–structures (two of them are almost Her-

mitian structures) on the Riemannian homogeneous 6–symmetric space (N, g). Two

of these structures were investigated before in [21], [5], [6], the other two structures

we study here. In particular, we prove that the canonical f–structure f2 is a non-

integrable nearly Kähler and Hermitian f–structure. Besides, the almost Hermitian

structure J belongs to the class G1 (see [12]).

The paper is organized as follows.

In Section 2, we collect preliminary basic notions on almost Hermitian structures

and metric f–structures on manifolds. In particular, the description of the main

classes of metric f–structures is included. The inclusive relations between these

classes are also indicated and the special case of almost Hermitian structures is con-

sidered.

In Section 3, we give a brief exposition of canonical structures on homogeneous reg-

ular Φ-spaces. The most important particular case of canonical f–structures on ho-

mogeneous k–symmetric spaces is presented in more detail. For future consideration,

we indicate the precise formulae for all the canonical f–structures for homogeneous

k–symmetric spaces of orders k = 3, 4, and 6.

Finally, in Section 4, we examine in detail special left-invariant f–structures on

the 6–dimensional generalized Heisenberg group (N, g). More exactly, we represent

this group as a Riemannian homogeneous 6–symmetric space and construct all the

canonical f–structures for the case. When investigating these structures, as a result,

new invariant examples for the main classes in Hermitian and generalized Hermitian

geometry are presented.

2. Almost Hermitian structures and metric f–structures

Let M be a smooth manifold, X(M) the Lie algebra of all smooth vector fields

on M , d the exterior differentiation operator. An almost Hermitian structure on M

(briefly, AH–structure) is a pair (g, J), where g = 〈·, ·〉 is a (pseudo)Riemannian

metric on M , J an almost complex structure such that 〈JX, JY 〉 = 〈X, Y 〉 for any
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X, Y ∈ X(M). It follows immediately that the tensor field Ω(X,Y ) = 〈X, JY 〉 is

skew-symmetric, i.e. (M, Ω) is an almost symplectic manifold. Ω is usually called a

fundamental form (the Kähler form) of an AH–structure (g, J).

Further, denote by ∇ the Levi-Civita connection of the metric g on M . We recall

below some main classes of AH–structures together with their defining properties

(see, for example, [12], [16]):

K Kähler structure: ∇J = 0;

H Hermitian structure: ∇X(J)Y −∇JX(J)JY = 0;

G1 AH–structure of class G1, or ∇X(J)X −∇JX(J)JX = 0;

G1–structure:

QK quasi-Kähler structure: ∇X(J)Y +∇JX(J)JY = 0;

AK almost Kähler structure: d Ω = 0;

NK nearly Kähler structure, ∇X(J)X = 0.

or NK–structure:

It is well known (see, for example, [12], [16]) that

K ⊂ H ⊂ G1; K ⊂ NK ⊂ G1; NK = G1 ∩QK; K = H ∩QK.

It should be noted that all the classes above mentioned correspond to some subsets

in the set W1 ⊕W2 ⊕W3 ⊕W4 of all almost Hermitian structures on M (see [12]).

In particular, the class G1 corresponds to the class W1⊕W3⊕W4 in the notation of

[12]. Other correspondences are the following:

H ←→ W3 ⊕W4; QK ←→ W1 ⊕W2; NK ←→ W1; AK ←→ W2; K ←→ {0}.
As usual, we will denote by N the Nijenhuis tensor of an almost complex structure

J , that is,

N(X, Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ]

for any X, Y ∈ X(M). Then the condition N = 0 is equivalent to the integrability of

J . Moreover, an almost Hermitian structure (g, J) belongs to the class H if and only

if N = 0 (see, for example, [12]).

Furthermore, we will consider a more general concept of metric f–structures, which

are a natural generalization of almost Hermitian structures.

An f–structure on a manifold M is known to be a field of endomorphisms f acting

on its tangent bundle and satisfying the condition f 3 + f = 0 (see [23]). The number

r = dim Im f is constant at any point of M and called a rank of the f–structure.
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Besides, the number dim Ker f = dim M − r is usually said to be a deficiency of the

f–structure and denoted by def f .

Recall that an f–structure on a (pseudo)Riemannian manifold (M, g = 〈·, ·〉) is

called a metric f–structure, if 〈fX, Y 〉 + 〈X, fY 〉 = 0, X, Y ∈ X(M) (see [16]). In

this case the triple (M, g, f) is called a metric f–manifold. It is clear that the tensor

field Ω(X, Y ) = 〈X, fY 〉 is skew-symmetric, i.e. Ω is a 2–form on M . Ω is called a

fundamental form of a metric f–structure [16]. It is easy to see that the particular

cases def f = 0 and def f = 1 of metric f–structures lead to almost Hermitian

structures and almost contact metric structures respectively.

Let M be a metric f–manifold. Then X(M) = L⊕M, where L = Im f and M =

Ker f are mutually orthogonal distributions, which are usually called the first and

the second fundamental distributions of the f–structure respectively. Obviously, the

endomorphisms l = −f 2 and m = id+f 2 are mutually complementary projections on

the distributions L and M respectively. We note that in the case when the restriction

of g to L is non-degenerate the restriction (F, g) of a metric f–structure to L is an

almost Hermitian structure, i.e. F 2 = −id, 〈FX,FY 〉 = 〈X, Y 〉, X, Y ∈ L.

A fundamental role in the geometry of metric f–manifolds is played by the compo-

sition tensor T , which was explicitly evaluated in [16]:

(2.1) T (X, Y ) =
1

4
f(∇fX(f)fY −∇f2X(f)f 2Y ),

where ∇ is the Levi-Civita connection of a (pseudo)Riemannian manifold (M, g),

X, Y ∈ X(M). Using this tensor T , the algebraic structure of a so-called adjoint

Q-algebra in X(M) can be defined by the formula:

X ∗ Y = T (X,Y ).

It gives the opportunity to introduce some classes of metric f–structures in terms

of natural properties of the adjoint Q–algebra [16]. We enumerate below the main

classes of metric f–structures together with their defining properties [16], [6]:

Kf Kähler f–structure: ∇f = 0;

Hf Hermitian f–structure: T (X, Y ) = 0, i.e. X(M) is

an abelian Q–algebra;

G1f f–structure of class G1, or T (X, X) = 0, i.e. X(M) is

G1f–structure: an anticommutative Q–algebra;

QKf quasi-Kähler f–structure: ∇Xf + TXf = 0;
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Kill f Killing f–structure: ∇X(f)X = 0;

NKf nearly Kähler f–structure, ∇fX(f)fX = 0.

or NKf–structure:

The following relationships between the classes mentioned are evident:

Kf = Hf ∩QKf ; Kf ⊂ Hf ⊂ G1f ; Kf ⊂ Kill f ⊂ NKf ⊂ G1f .

It is important to note that in the special case f = J we obtain the corresponding

classes of almost Hermitian structures (see [12]). In particular, for f = J the classes

Kill f and NKf coincide with the well-known class NK of nearly Kähler structures.

Finally, we recall that the Nijenhuis tensor Nf of any f–structure is defined by

Nf (X, Y ) = f 2[X,Y ] + [fX, fY ]− f [fX, Y ]− f [X, fY ]

for any X, Y ∈ X(M) (see, for example, [23]). Besides, the characteristic condition

for the integrability of f is Nf = 0 [23].

3. Canonical f–structures on homogeneous k–symmetric spaces

We briefly formulate some basic definitions and results related to regular Φ–spaces

and canonical affinor structures on them. More detailed information can be found in

[4], [7], [22], [17], [19], [20], [8] and others.

Let G be a connected Lie group, Φ its (analytic) automorphism, GΦ the subgroup

of all fixed points of Φ, and GΦ
o the identity component of GΦ. Suppose a closed

subgroup H of G satisfies the condition GΦ
o ⊂ H ⊂ GΦ. Then G/H is called a

homogeneous Φ–space.

Homogeneous Φ–spaces include homogeneous symmetric spaces (Φ2 = id) and,

more general, homogeneous Φ–spaces of order k (Φk = id) or, in the other terminology,

homogeneous k–symmetric spaces (see [17]).

For any homogeneous Φ–space G/H one can define the mapping

So = D : G/H → G/H, xH → Φ(x)H.

It is known [19] that So is an analytic diffeomorphism of G/H. So is usually called a

”symmetry” of G/H at the point o = H. It is evident that in view of homogeneity

the ”symmetry” Sp can be defined at any point p ∈ G/H.

Note that there exist homogeneous Φ–spaces that are not reductive. That is why

so-called regular Φ–spaces first introduced by N.A.Stepanov [19] are of fundamental

importance.
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Let G/H be a homogeneous Φ–space, g and h the corresponding Lie algebras for

G and H, ϕ = dΦe the automorphism of g. Consider the linear operator A = ϕ− id

and the Fitting decomposition g = g0⊕ g1 with respect to A, where g0 and g1 denote

0- and 1-component of the decomposition respectively. It is clear that h = Ker A,

h ⊂ g0. Recall that a homogeneous Φ-space G/H is called a regular Φ–space if h = g0

[19]. Note that other equivalent defining conditions can be found in [4], [7].

We formulate two basic facts [19]:

Any homogeneous Φ–space of order k (Φk = id) is a regular Φ–space.

Any regular Φ–space is reductive. More exactly, the Fitting decomposition

(3.1) g = h⊕m, m = Ag

is a reductive one.

Decomposition (3.1) is called the canonical reductive decomposition corresponding

to a regular Φ–space G/H, and m is the canonical reductive complement. Besides,

this decomposition is obviously ϕ–invariant. Denote by θ the restriction of ϕ to m.

As usual, we identify m with the tangent space To(G/H) at the point o = H. We

note that θ commutes with any element of the linear isotropy group Ad(H) (see [19]).

It also should be noted (see [19]) that (dSo)o = θ.

An affinor structure on a manifold is known to be a tensor field of type (1, 1) or,

equivalently, a field of endomorphisms acting on its tangent bundle. Suppose F is an

invariant affinor structure on a homogeneous manifold G/H. Then F is completely

determined by its value Fo at the point o, where Fo is invariant with respect to Ad(H).

For simplicity, we will denote by the same manner both any invariant structure on

G/H and its value at o throughout the rest of the paper.

Recall [4] that an invariant affinor structure F on a regular Φ–space G/H is called

canonical if its value at the point o = H is a polynomial in θ. It follows that any

canonical structure is invariant, in addition, with respect to the ”symmetries” {Sp}
of G/H.

Denote by A(θ) the set of all canonical affinor structures on a regular Φ–space

G/H. It is easy to see that A(θ) is a commutative subalgebra of the algebra A of all

invariant affinor structures on G/H. Evidently, the algebra A(θ) for any symmetric

Φ–space (Φ2 = id) is trivial, i.e. it is isomorphic to R. As to arbitrary regular Φ-space

(G/H, Φ), the algebraic structure of its commutative algebra A(θ) was completely

described (see [8]).
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The most remarkable example of canonical structures is the canonical almost com-

plex structure J = 1√
3
(θ − θ2) on a homogeneous 3–symmetric space (see [20], [22],

[10]). It turns out that it is not an exception. In other words, the algebra A(θ)

contains a rich collection of affinor structures of classical types. We will concentrate

on the following affinor structures of classical types:

almost complex structures J (J2 = −1);

almost product structures P (P 2 = 1);

f–structures (f 3 + f = 0) [23];

f–structures of hyperbolic type or, briefly, h–structures (h3 − h = 0) [16].

Clearly, f–structures and h–structures are generalizations of structures J and P re-

spectively.

All the canonical structures of classical type on regular Φ-spaces were completely

described [4],[8]. In particular, for homogeneous k–symmetric spaces, precise compu-

tational formulae were indicated. The formulae for canonical f–structures are [4]:

(3.2) f =
2

k

u∑

m=1




u∑

j=1

ζj sin
2πmj

k




(
θm − θk−m

)
,

where u =

{
n, if k = 2n + 1
n− 1, if k = 2n

, and ζj ∈ {−1, 0, 1}, j = 1, 2, . . . u, moreover,

not all of the numbers ζj are zero. The canonical f–structures fj, determined by the

sets (ζ1, . . . ζj, . . . ζu), in which ζj = 1 and the remaining components vanish are called

base canonical f–structures.

The particular cases k = 3, 4, 6 of formula (3.2) are of special interest for our

future consideration. In the case k = 3 we obtain the well-known canonical almost

complex structure J = 1√
3
(θ − θ2) (see [20], [22], [10] and many other papers). As

to homogeneous 4–symmetric spaces, they admit the only (up to sign) canonical f–

structure f = 1
2
(θ − θ3). Note that the same structure was constructed (in a bit

different form) in [18]. Finally, we indicate the formulae for all (up to sign) canonical

f–structures on homogeneous 6–symmetric spaces:

(3.3) f1 =

√
3

6
(θ+θ2−θ4−θ5), f2 =

√
3

6
(θ−θ2+θ4−θ5), f3 = f1+f2, f4 = f1−f2,

where the structures f1 and f2 are the base canonical f–structures.

It should be mentioned that canonical structures play an important role in Hermit-

ian and generalized Hermitian geometry. Namely, certain classes of almost Hermitian

structures are provided with the remarkable set of invariant examples by means of the
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canonical almost complex structure on homogeneous 3–symmetric spaces (see, e.g.,

[22], [10]). It turns out that there is also a wealth of invariant examples for the basic

classes of metric f–structures. These invariant metric f–structures can be realized

on homogeneous k–symmetric spaces with canonical f–structures (see, e.g., [18], [5],

[6], [7], [8], [9]).

4. Canonical f–structures on the 6–dimensional generalized

Heisenberg group

We briefly formulate some notions and results related to the 6–dimensional gener-

alized Heisenberg group (N, g). As to details, we refer to [14], [15], [21].

Let V and Z be two real vector spaces of dimension n and m (m ≥ 1) both equipped

with an inner product which we shall denote for both spaces by the same symbol 〈·, ·〉.
Further, let j : Z → End(V ) be a linear map such that

|j(a)x| = |x||a|, j(a)2 = −|a|2I, x ∈ V, a ∈ Z.

Next we put n := V ⊕ Z together with the bracket defined by

[a + x, b + y] = [x, y] ∈ Z, 〈[x, y], a〉 = 〈j(a)x, y〉,

where a, b ∈ Z and x, y ∈ V . It is a 2–step nilpotent Lie algebra with center Z. The

simply connected, connected Lie group N whose Lie algebra is n is called a generalized

Heisenberg group. Note that N has a left-invariant metric g induced by the following

inner product on n:

〈a + x, b + y〉 = 〈a, b〉+ 〈x, y〉, a, b ∈ Z, x, y ∈ V.

It is important to note that (N, g) is not a naturally reductive homogeneous space

(see [15], [21], p.96). The Levi-Civita connection ∇ of the metric g was indicated in

[14]:

(4.1)





∇xy = 1
2
[x, y],

∇ax = ∇xa = −1
2
j(a)x

∇ab = 0,

,

where a, b ∈ Z, x, y ∈ V.

The 6–dimensional generalized Heisenberg group (N, g) is of especial interest (see

[15], [21]). The brackets for the Lie algebra n = L(x1, x2, x3, x4) ⊕ L(a1, a2) were
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explicitly indicated in ([21], p.111):

(4.2)





[x1, x2] = a1, [x1, x3] = a2,

[x2, x4] = −a2, [x3, x4] = a1,

all the other brackets being zero.

In what follows, we use the interpretation of the 6–dimensional Lie algebra n by

means of quaternions (see [15], [21], p.104). More exactly, let V = H be the space of

quaternions, and Z be a two-dimensional subspace of purely imaginary quaternions.

Further, let j : Z → End V be the linear map defined by

j(a)x = a · x, a ∈ Z, x ∈ V,

i.e. j(a)x is the ordinary left-multiplication of x by a. We also note that x2 =

j(a1)x1, x3 = j(a2)x1, x4 = j(a1)j(a2)x1 ([21], p.108).

It was shown in [21] that (N, g) is simultaneously 3– and 4–symmetric space. The

canonical almost complex structure J = 1√
3
(θ − θ2) on the Riemannian 3–symmetric

space (N, g), as it was stated in [21], is neither nearly Kähler nor almost Kähler.

As to the canonical f–structure for the Riemannian 4–symmetric space (N, g), the

following results were obtained:

Theorem 4.1. [5], [6] The 6–dimensional generalized Heisenberg group (N, g) is a

nearly Kähler and Hermitian f–manifold with respect to the canonical f–structure

f = 1
2
(θ−θ3) of the Riemannian 4–symmetric space. This f–structure is not integrable

on N .

Following the method in [21], we construct an automorphism of order 6 for the Lie

algebra n. Keeping the previous notations, we put [21]

U1 = x1 + ix4, U2 = x2 + ix3, U3 = −a1 + ia2.

Further, define the linear map ϕ of n by the formula:

ϕ(Uj) = e
πi
3 Uj, j = 1, 2, ϕ(U3) = −e

πi
3 U3.

It is not difficult to prove that ϕ is an isometric automorphism with the only fixed

point of the Lie algebra (n, 〈·, ·〉). Besides, ϕ6 = id. If we consider the corresponding

automorphism Φ of order 6 for the Lie group N , then (N, g) is a Riemannian ho-

mogeneous 6–symmetric space with respect to Φ. In our previous notations, θ = ϕ.
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Now, using formulae (3.3) for canonical f–structures, we can explicitely calculate the

base f–structures in our case:

f1 : (x1, x2, x3, x4, a1, a2) → (−x4,−x3, x2, x1, 0, 0),

f2 : (x1, x2, x3, x4, a1, a2) → (0, 0, 0, 0,−a2, a1).

It easily follows that the other two canonical f–structures f3 = f1+f2 and f4 = f1−f2

are almost complex structures on N . Moreover, applying the general results from [7]

we conclude the compatibility of all these structures with the metric g, i.e. f1 and f2

are metric f–structures as well as J = f3 and J̃ = f4 are almost Hermitian structures.

Further, we notice that the structure J̃ is just the canonical almost complex struc-

ture for 3–symmetric space (N, g) mentioned above [21], [7]. Besides, the structure

f1 coincides with the canonical f–structure for the corresponding 4–symmetric space

(see Theorem 4.1). It means that we should study the structures f2 and J only.

Theorem 4.2. Let (N, g) be the 6–dimensional generalized Heisenberg group consid-

ered as the Riemannian homogeneous 6–symmetric space. Then the canonical struc-

ture f2 is a non-integrable nearly Kähler and Hermitian f–structure on the manifold

N , but f2 is not a Killing f–structure.

Proof. The defining condition of the property NKf (see Section 2) for the structure

f2 is the following: ∇f2X(f2)(f2X) = 0 for any X ∈ n. Put X = x + a ∈ n, where

x ∈ V, a ∈ Z. Then, using formula (4.1), we obtain:

∇f2X(f2)(f2X) = ∇f2(a) (−a)− f2 ∇f2(a) f2(a) = 0− f2(0) = 0.

It means that f2 is an NKf–structure. However, it can be proved in the same manner

that the condition ∇X(f2)X = 0 is not satisfied, i.e. f2 is not a Killing f–structure.

Further, we recall that the composition tensor T for any NKf–structure on a

manifold (M, 〈·, ·〉, f) can be presented in the form ([8], p.121):

T (X, Y ) =
1

2
f∇fX(f)fY ,

where X, Y ∈ X(M). Put again X = x + a, Y = y + b, then we have:

∇f2X(f2)(f2Y ) = ∇f2(a) (−b)− f2 ∇f2(a) f2(b) = 0− f2(0) = 0.

It implies T (X,Y ) = 0, i.e. f2 is a Hermitian f–structure.

Finally, it remains to show that the Nijenhuis tensor Nf (see Section 2) of the

f–structure f2 is not trivial. Keeping the same notations and taking into account
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(4.2), we can calculate the Nijenhuis tensor in our case:

Nf2(X,Y ) = f 2
2 [x, y] = −[x, y] 6= 0.

As a result, f2 is not integrable on (N, g). This completes the proof. ¤

Theorem 4.3. The 6–dimensional generalized Heisenberg group (N, g) is a G1–

manifold with respect to the left-invariant canonical almost Hermitian structure J =

f3 = f1 + f2 of the Riemannian homogeneous 6–symmetric space (N, g, Φ). Besides,

the structure J is neither nearly Kähler nor Hermitian structure on the manifold

(N, g).

Proof. We should verify the condition (see Section 2)

∇X(J)X −∇JX(J)JX = 0.

As above, put X = x + a ∈ n, where x ∈ V, a ∈ Z. Taking into account that

[x, Jx] = 0 for any x ∈ V , we can obtain:

∇X(J)X = −1

2
(a · Jx + Ja · x− 2J(a · x)).

Using the same method, we get:

∇JX(J)JX =
1

2
(Ja · x + a · Jx + 2J(Ja · Jx)).

Thus we have

(4.3) ∇X(J)X −∇JX(J)JX = −a · Jx− Ja · x + J(a · x)− J(Ja · Jx).

Directly calculating, one can get the following equality:

(4.4) a · Jx + Ja · x = 0.

Now, substituting Jx for x in (4.4), we get

(4.5) Ja · Jx− a · x = 0.

Finally, combining (4.3), (4.4), and (4.5), we obtain:

∇X(J)X −∇JX(J)JX = 0.

In addition, it is obvious from above that J is not a nearly Kähler structure. At

last, the application of Theorems 4.1 and 4.2 yields that the structure J = f1 + f2

cannot be integrable. It means that J is not a Hermitian structure. This concludes

the proof. ¤
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Remark 4.1. It is interesting to note that the almost Hermitian structure J̃ = f4 =

f1 − f2 is not a G1–structure on (N, g).

Indeed, using the method of Theorem 4.3, we can get:

∇X(J̃)X −∇J̃X(J̃)J̃X = −2a · J̃x + 2J̃(a · x) 6= 0.

Remark 4.2. The class G1 of almost Hermitian structures is of especial interest in

dimension 6. This class can be defined by the condition that the Nijenhuis tensor is

totally skew-symmetric or, equivalently, there exists a linear connection ∇ preserving

the almost Hermitian structure and with totally skew-symmetric torsion [3]. That is

why G1–structures have interesting applications in heterotic strings (see, for example,

[13]). Specifically, in [13] the authors presented an example of a left-invariant proper

(i.e. neither nearly Kähler nor Hermitian) G1–structure on the 6–dimensional 2–

step nilpotent Lie group G. Not going into details, we also note that the technique

used in [13] is based on left-invariant 1–forms, and the group G constructed has a

3–dimensional center. Thus, the example as well as the method in [13] are completely

different from our consideration in Theorem 4.3. It is very interesting to the author if

there were in the literature other explicitly described examples of left-invariant proper

(i.e. neither nearly Kähler nor Hermitian) G1–structures on Lie groups, in particular,

in the 6–dimensional case.

Remark 4.3. The 6–dimensional generalized Heisenberg group (N, g) corresponds to

the real Lie group underlying the 3–dimensional complex Heisenberg group GH . Fur-

ther, the Iwasawa manifold M = GH/Γ is a compact nilmanifold , where Γ is the

discrete subgroup generated by means of Gaussian integers (see, for example, [1]).

Almost Hermitian structures on the Iwasawa manifold were intensively studied by

many authors. In particular, in [1], [2] the authors considered the set Z of all invari-

ant almost complex structures on M compatible with the standard metric g and the

orientation of M , which is determined by the natural complex structure J0 on the

Iwasawa manifold. Specifically, in the notations of [1], [2], they proved that Z1 = ∅
(there are no nearly Kähler structures in Z) and Z34 = Z134 (the classes G1 and H

coincide in Z, i.e. any G1–structure is integrable). It seems to be interesting to study

interrelation between invariant metric f–structures (in particular, almost Hermitian

structures) on the 6–dimensional generalized Heisenberg group and on the Iwasawa

manifold.
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