p-ADIC SPLINES AND THE INTEGRAL OPERATOR IN THE SPACE OF NON-ARCHIMEDIAN FUNCTIONS

A. Radyna

Mechanical and Mathematical Faculty, Belarusian State University, 4 Skaryna ave., 220030 Minsk, Belarus alesr@tut.by

Let p be a prime number, $\alpha \in \mathbb{Q}$, $\alpha > 1$, and \mathbb{Q}_p the field of p-adic numbers. Denote by \mathbb{K} the minimal field containing p^{α} and \mathbb{Q}_p . The p-adic norm extended on \mathbb{K} from \mathbb{Q}_p will be non-archimedean (see [1] for details). We approximate an indicator of a ball with respect to the norm of $C(\mathbb{Z}_p; \mathbb{K})$ by p-adic splines, which are introduced here as a \mathbb{K} -linear combinations of translates of $|x|_p^{-\alpha}$ (see [2]). On the other hand the splines are very close to integral sums in Volkenborn's sense of the integral operator of kernel $|x - y|_p^{-\alpha}$. We show that the splines tend uniformly to the operator image of some function. We derive this function and then it is not hard to find pre-image of any locally constant function given on \mathbb{Z}_p by linearity.

In a talk we discuss the continuous differentiability of $|x|_p^{-\alpha}$, the construction of the *p*-adic splines, a sketch proof of that the splines tend to the indicator, and that the splines tend to the image. We will present a pre-image of the indicator.

References

1. Schikhof W.H. Ultrametric calculus. An introduction to p-adic analysis. Cambridge University Press, 1984.

2. Radyna A., Sender A. The representation of a characteristic function of a ball by Riesz — Volkenborn's potential// Vestnik Grodnenskogo universiteta. Ser. 2. Physics. Mathematics. Informatics. Technology. Economics. 2007. N 2(52). P. 22-28.