МОДЕЛИРОВАНИЕ ПОЛИМЕРИЗАЦИИ АКТИНА

М. В. Антоненко

введение

Процесс полимеризации актина играет ключевую роль во многих физиологических процессах, таких как морфогенез, движение и деление клеток, их взаимодействие [1]. Поэтому нарушение структуры нитей актина часто связано с различного рода заболеваниями, в частности, неконтролируемая миграция раковых клеток приводит к метастазам [1].

Результаты анализа данных, получаемых из экспериментов FRAP (Fluorescence Recovery After Photobleaching), зависят от способа нормировки "сырых" данных. На практике применяются различные стратегии нормировок [2]. В настоящее время не существует единой классификации, позволяющей определить, какой из методов нормировки данных FRAP и при каких условиях наиболее эффективен с точки зрения достоверности полученных результатов.

Целью данной работы является изучение и исследование методов и моделей анализа полимеризации белка актина с учетом экспериментальных особенностей метода восстановления флуоресценции после фотообесцвечивания.

ОСНОВЫ МЕТОДА FRAP

Метод восстановления флуоресценции после фотообесцвечивания является одним из наиболее широко используемых методов флуоресцентной микроскопии и применяется для изучения разнообразных процессов, протекающих в клетке [3].

Перед проведением эксперимента исследуемый образец (исследуемые белки) окрашивается флуоресцирующим красителем (чаще всего green fluorescence protein – GFP). Затем в течение относительно короткого промежутка времени с помощью света лазера высокой интенсивности происходит необратимое фотообесцвечивание небольшой области в клетке [4]. Из-за диффузии и транспортных процессов, а также химического взаимодействия в клетке, флуоресцирующие молекулы из необесцвеченной области проникают в исследуемую область. Таким образом, происходит частичное или полное восстановление флуоресценции. После фотообесцвечивания образец облучают пучком лазера относительно низкой мощности, чтобы замерить интенсивность флуоресценции. Однако ос-

лабленный пучок лазера обесцвечивает часть флуорофоров. Этот эффект называется «приобретенное обесцвечивание» (acquisition bleaching) [2].

СИМУЛЯТОР FRAР ЭКСПЕРИМЕНТОВ

Симулятор FRAP экспериментов был разработан для трех модельных систем (область засветки в виде круга):

Модель диффузии и неподвижных ловушек G-актина (глобулярный актин в мономерной форме) [5].

$$\begin{cases} I_{frap}(p) = \frac{1}{p} - \frac{F_{eq}}{p} [1 - 2K_{1}(qw)I_{1}(qw)](1 + \frac{k_{on}^{*}}{p + k_{off}}) - \frac{C_{eq}}{p + k_{off}} \\ F_{eq} = \frac{k_{off}}{k_{on}^{*} + k_{off}}; C_{eq} = \frac{k_{on}}{k_{on}^{*} + k_{off}}; q = \sqrt{\frac{p}{D_{f}}(1 + \frac{k_{on}^{*}}{p + k_{off}})} \end{cases}, \quad (1)$$

где p – переменная преобразования Лапласа в пространстве изображений; I_frap – интенсивность флуоресценции; k_{on} , k_{off} – константы скоростей связывания (ассоциации) и освобождения (диссоциации) соответственно; D_f – коэффициент диффузии мономеров белка актина; F_{eq} , C_{eq} – концентрации в состоянии равновесия свободных белков и неподвижных ловушек белка актина соответственно; $I_{I,K_{I}}$, – модифицированные функции Бесселя первого и второго рода соответственно; w – радиус пятна засветки. Для получения зависимости интенсивности флуоресценции от времени, необходимо выполнить обратное преобразование Лапласа. Данная операция выполнена с использованием функции *invalp.m* [6].

1. Модель диффузии G-актина (*k*_{on}/ *k*_{off} <<1) [5].

$$I_{frap}(t) = e^{-\frac{w^2}{2D_f t}} * [I_0(\frac{w^2}{2D_f t}) + I_1(\frac{w^2}{2D_f t})], \qquad (2)$$

где *t* – время восстановления флуоресценции.

2. Модель неподвижных ловушек G-актина (
$$\frac{k_{on}^* w^2}{D_f} << 1$$
 и $\frac{k_{off}}{k_{on}^*} << 1$) [5].

$$I_frap(t) = 1 - C_{eq} e^{-k_{off}t}, (3)$$

Моделирование проводилось для семейства кривых восстановления: непосредственно кривой *frap* – средняя интенсивность флуоресценции в исследуемой фотообесцвеченной области; *whole* – во всей клетке; *base* – вне клетки, фон; *reference* – часть клетки вне исследуемой области. На все модельные кривые накладывался шум.

$$I(t) = I(t) + C_{disp} * \xi * \sqrt{I(t)},$$
(4)

где C_{disp} – коэффициент разброса, регулирующий высоту шума; ξ – реализация стандартной нормальной случайной величины N(0,1). Эффект приобретенного обесцвечивания учитывался введением параметра τ_{decay} . Пример для кривой восстановления флуоресценции *whole* (5)

$$I_{whole}(t) = A_{decay} * e^{-\tau_{decay} * t} + y_0, \qquad (5)$$

где y_0 – некоторое значение интенсивности флуоресценции для t $\rightarrow \infty$; τ_{decav} – параметр, учитывающий уменьшение флуоресценции.

ИССЛЕДОВАНИЕ ВЛИЯНИЯ МЕТОДОВ НОРМИРОВОК "СЫРЫХ" ДАННЫХ НА РЕЗУЛЬТАТЫ АНАЛИЗА

Для исследования влияния методов нормировок "сырых" данных FRAP на результаты проводимого анализа была разработана специальная методика. Выполнен анализ следующих нормировок: одинарная (*Single*), стандартизированная одинарная (*Single FS*), двойная (*Double*), стандартизированная двойная с (*Double FS*), Рэйнера (*Rainer's*) и нормировка обратного умножения (*Back Multiply*) [2].

Исследование проводилось для следующих моделей: 1) неподвижных ловушек G-актина, 2) диффузии мономеров G-актина, в зависимости от уровня шума (коэффициент C_{disp}) и величины параметра τ_{decay} , коэффициента диффузии D_f , коэффициента диссоциации k_{off} . В процессе оценки параметров кривых восстановления флуоресценции использовался алгоритм оптимизации Левенберга-Марквардта [7]. Для генерации начальных приближений использовался метод генерации параметров в узлах сетки. Данная процедура позволяет избежать попадания в локальный минимум в процессе оптимизации. Для оценки качества процесса подгонки использовалась нормированная сумма квадратов разностей отклонений смоделированных и теоретических данных *RMSE* (Root Mean Squared Error) [7]:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (y_i - y_i^m)^2}{n - m}},$$
(6)

где y_i, y_i^m – соответственно смоделированные и теоретические точки; n – размер выборки; m – количество оцениваемых параметров. *RMSE* близок к 0 при успешной подгонке. Качество методов нормировок оценивалось по относительной ошибке (*RE* – relative error) оцененных и исходных па-

раметров, заданных в модели: $RE = (a - a_0/a_0)*100\%$, где *а* и a_0 – полученное и действительное значение некоторого параметра соответственно.

В случае значительного эффекта приобретенного фотообесцвечивания применимы двойная (RE<2%, RMSE<0.1) и стандартизированная двойная (RE: 10-20%, RMSE<0.1) нормировки. Однако нормировки проявили неустойчивость к шуму (RE >35%, RMSE>0.15 – при большом шуме), что допускает возможность их применения лишь при малых шумах (RE <15%, RMSE<0.1). В остальных случаях данные методы дают неудовлетворительный результат (RE: 35-60%).

Одинарная нормировка устойчива к шуму для всех моделей (*RE*: 10– 15% и *RMSE*:0.01–0.1 на всем диапазоне). Нормировка показывает хороший результат при различных значениях параметров системы (*RE*<10%, *RMSE*~0.05 для k_{off} ; *RE*:18-20%, *RMSE*<0.05 для D_f), кроме случая эффекта приобретенного фотообесцвечивания (*RE*:75-85%, *RMSE*>0.15). Данный эффект одинарная нормировка не позволяет учесть. Стоит отметить, что нормировка является наиболее устойчивой и универсальной.

Стандартизированная одинарная нормировка показала пригодность лишь для модели ловушек, причем на всем диапазоне изменения шума (*RE*<5 %, *RMSE*<0.1) и скорости диссоциации (*RE*:2-8%, *RMSE*~0.05).

Нормировки Рэйнера и обратного умножения дают большую погрешность в случае наличия значимого эффекта приобретенного фотообесцвечивания (*RE*:20-60%). Данные методы могут использоваться лишь при малых величинах коэффицента диффузии D_f ($D_f < 5$ мкм²/с) в модели диффузии мономеров G-актина (тогда *RE*<20%, *RMSE*<0.1).

Литература

- 1. Plastino J, Sykes C. The actin slingshot // Biol. Curr Opin Cell. 2005. T. 17(1). P.62.
- 2. Miura K. Analysis of FRAP curves. Heidelberg, 2005.
- 3. *Mueller F, Wach P, McNally JG*. Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching // Biophysical Journal. 94. 2008. P. 3323–39.
- 4. Nathan W. Goehring, Debanjan Chowdhury, Anthony A. Hyman, and Stephan W. Grill. FRAP Analysis of Membrane-Associated Proteins: Lateral Diffusion and Membrane-Cytoplasmic Exchange // Biophysical Journal. Volume 99. 2010. P. 2443–2452.
- 5. Brian L. Sprague, Robert L. Pego, Diana A. Stavreva, and James G. McNally. Analysis of Binding Reactions by Fluorescence Recovery after Photobleaching // Biophysical Journal. T. 86. № 6. 2004. P. 3473–3495.
- 6. *Hollenbeck K. J.* INVLAP.M: A matlab function for numerical inversion of Laplace transforms by the de Hoog algorithm. 1 Oct 1998
- 7. *Philip R. Bevington, D. Keith Robinson.* Data Reduction and Error Analises. 3-d edition. McGrawHill, 2003.