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Introduction. Three-dimensional Poiseille and Couette flows enclosed by wavy walls is
investigated in [1, 2] by symbolic-numerical algorithms. The wave amplitude is proportional to the
mean clearance of the channel multiplied by a small dimensionless parameter £. A perturbation
expansion in terms of the powers of £ of the full steady Navier — Stokes equations yields a cascade
of boundary value problems which are solved at each step in closed form. The supremum value
of ¢ for which the expansion converges, is determined as a function of the Reynolds number Re.
The analytical-numerical algorithm is applied to compute the velocity in the channel to O(e?).
Even in the first order approximation O(e), new results are obtained which complement, the triple
deck theory and its modifications. In particular, the incipient separation-detachment is discussed
using the Prandtl — Schlichting criterion of starting eddies. The value &, for which eddies start
in the channel, is analytically deduced as a function of Re as well as analytical formulas for the
coordinates of the separation points. These analytical formulas show that £, in 3D channels is
always less than ¢, in 2D channels. For non-smooth channels, a criterion of infinitestimally small
€. 18 deduced. The critical value of £ up to which bifurcation of solutions can occur is estimated.

The present note is devoted to application of the results [1, 2] to Moffat’s eddies [3] described
by linear Stokes equations in non-smooth channels.

Structure of the flow. The structure of the flow in curvilinear channels essentially depends
on the wave amplitude of the walls. The flow in some channels is separated into a series of flow cells.
In the middle part of the channel, the velocity profiles look like a disturbed Poiseuille parabolic
profile. The flow near the walls can be similar to the flow in a cavity where developed viscous
eddies arise. These eddies are characterized by a change of the vorticity sign. Systematical studies
of eddies were performed by Moffatt in his seminal paper [3] where he proved that any flow at the
corner between two planes consists of a sequence of self-similar eddies, when the angle between
the planes is less than a critical value. Let u = w(z, 2) = (u(x, z),w(x, 2)) be the dimensionless
velocity vector, and p = p(z,2) the pressure. The fluid is governed by the Stokes equations

Viu=Vp, V-u=0 (1)
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in the channel bounded by the walls
| | 2= b(1+eT(z), z=-b(l+eT(x)), (2)

with the boundary conditions on (2)
u=_0. ' (3)

The solution u of (1)-(3) belongs to the class of periodic functions with period 27 in z. An
overall external gradient pressure is applied along the x-direction. It can be normalized by a
constant jump along the x-axis of the periodic cell

plx+m2z)—plz —7,2) = —4. ? _ (4

One can use well developed methods of complex analysis to solve the problem, since solutions

of equations (1) can be written via pair of analytic functions. Here, the results of [1] are used.

The problem (1)-(4) had been solved (also for non-symmetric 3D channels) in paper [1] for the

infinitely differentiable function T(x). A cascade of boundary value problems were deduced for

the Stokes equations for a straight channel to calculate velocities in the form of an ¢ -expansion.
In the present paper, we restrict ourselves the first-order approximation

u(r, z) = ug(e, z) +uy(z, 2)e + O(e?), plz, 2) = po(z,2) + p1(z, 2)e + O(e?). (5)

The representations (5) were justified in [1] where it was proved that (5) holds when & does not
exceed a critical value
ec = (bsup[m max(lany|, Iﬁml])#la (6)
m

where ay, and G, denotes the Fourier coefficients of T'(xz). Hence,

T(z) = Z Qi €OS TR + Py, SINTNT. (7

m=1

The Prandt] - Schlichting criterion {2] for eddies in 2D smooth channels reads as
Ou
'5; - 0: ) (8)

where u is the x-component of the velocity u, 5‘3-; is the normal derivative to the wall. In the

next section, equation (8) is solved explicitly up to O(e?).
We have [1]

ui(z, z) = 2b? i Pp(2)[am cosmz + B sinmz], (9)

m=1

where the function P,.(z) has the form

(bm cosh b — sinh bm) cosh mz — sinh bm sinh mz

Pr(2) =2 2bm — sinh 2bm (10)
Calculating formally g}“i at the bottom point (0,—b —¢) by (8) up to O(e?) we arrive at the

formula

du = 4bm sinh? bm 2
— -_i — = % 1 . 11
Bn(o’ b—-e)=2b {lﬁ—sn;am( +2bm—sinh2bm)]+0(s ) (11)
It follows from formula (11) that eddies arise at any non-smooth channel.
However, the obtained result has to be checked up to O(e?), since lower order formulas can
give not real physical results as shown in [2].
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