МОДЕЛИРОВАНИЕ ПОТОКА ФОТООТСЧЁТОВ С УЧЁТОМ ДВУХ ИЗЛУЧАТЕЛЬНЫХ СОСТОЯНИЙ МОЛЕКУЛ В СИСТЕМАХ ФЛУОРЕСЦЕНТНОЙ ФЛУКТУАЦИОННОЙ СПЕКТРОСКОПИИ

И. П. Шингарёв, В. В. Скакун

введение

Во флуоресцентной флуктуационной спектроскопии (ФФС) анализируются флуктуации интенсивности флуоресценции небольшого числа молекул, что даёт информацию об их структуре, количестве, динамике, излучательных свойствах и взаимодействиях [1]. Многие флуоресцирующие молекулы обладают двумя состояниями с разным квантовым выходом [2]. При этом молекула может спонтанно изменять своё состояние, что обусловлено, например, реакциями изомеризации [3], интеркомбинационной динамикой [4] или конформационными изменениями [5]. Учёт этих изменений при разработке методов анализа данных ФФС необходим для получения адекватных оценок параметров исследуемых образцов.

Предварительное тестирование метода анализа с целью установления его адекватности, точности, устойчивости и границ применения удобно проводить на данных, полученных с помощью имитационных моделей. В настоящей работе предлагается имитационная модель потока фотоотсчётов в ФФС при учёте диффузии флуоресцирующих молекул с двумя обратимыми излучательными состояниями. Особенностью модели является получение фотоотсчётов в виде случайного потока событий, что позволяет проводить тестирование методов анализа данных ФФС, основанных на построении различных характеристик потока.

ТЕОРИЯ.

Система ФФС представляет собой совокупность образца и измерительной установки, выполненной на базе конфокального микроскопа [6]. При постоянной интенсивности возбуждающего излучения величина флуктуаций интенсивности флуоресценции может быть представлена как [7]:

$$\delta F(t) = \int_{V} W(r) \delta(qC(r,t)) dr, (1)$$

где $W(\mathbf{r})$ – нормированный профиль засветки, характеризующий пространственное распределение детектируемого излучения, q – характеристическая яркость, равная количеству фотонов, регистрируемых от молекулы за единицу времени, и зависящая от её квантового выхода, $C(\mathbf{r},t)$ – локальная концентрация молекул.

Профиль засветки *W*(**r**) может быть аппроксимирован функцией вида [8]:

$$B(\mathbf{r}) = \exp\left[-2(x^2 + y^2)/\omega_0^2 - 2z^2/z_0^2\right], (2)$$

где ω_0 и z_0 определяют размеры области засветки, **r** = (*x*,*y*,*z*).

Для оценки размеров области, в которой молекулы преимущественно возбуждаются и излучают фотоны, вводится понятие эффективного объёма [9]:

$$V_{eff} = \left(\int_{V} W(\mathbf{r}) d\mathbf{r} \right)^{2} / \int_{V} W^{2}(\mathbf{r}) d\mathbf{r} , (3)$$

что позволяет оценивать концентрацию, находя число молекул $N_{eff} = CV_{eff}$, где C – концентрация молекул.

Одним из методов анализа данных ФФС является метод флуоресцентной корреляционной спектроскопии (ФКС), основанный на анализе автокорреляционной функции (АКФ) флуктуаций интенсивности [9]. Для случая свободно диффундирующих молекул с двумя излучательными состояниями A и B при учёте (2), АКФ флуктуаций интенсивности флуоресценции записывается как [10]:

$$G(\tau) = 1 + \frac{1}{N_{eff}} \left(1 + \frac{\tau}{\tau_{Dj}} \right)^{-1} \left(1 + \frac{\tau}{a^2 \tau_{Dj}} \right)^{-1/2} \left(1 + \frac{F}{1 - F} \exp\left[-\frac{\tau}{\tau_p} \right] \right), (4)$$

где $\tau_D = \omega_0^2/4D$, $a = z_0/\omega_0$, $\tau_p = (K_{AB} + K_{BA})^{-1}$, $F = K_{AB}K_{BA}(q_A - q_B)^2(K_{AB} + K_{BA})^{-1}$ ¹ $(K_{AB} q_A^2 + K_{BA} q_B^2)^{-1}$, D – коэффициент диффузии молекул, K_{AB} и K_{BA} – частоты переходов между состояниями, q_A и q_B – характеристические яркости состояний.

МОДЕЛИРОВАНИЕ ПОТОКА ФОТООТСЧЁТОВ.

Будем считать, что молекулы независимы и время затухания флуоресценции молекул пренебрежимо мало по сравнению со временем моделирования наиболее быстрых процессов. Система уравнений, описывающая динамику переходов между состояниями *A* и *B*, может быть представлена в виде [3, 9]:

$$\frac{dS_A(t)}{dt} = K_{BA}S_B(t) - K_{AB}S_A(t), \quad \frac{dS_B(t)}{dt} = K_{AB}S_A(t) - K_{BA}S_B(t), (5)$$

где $S_A(t)$, $S_B(t)$ – вероятности обнаружения молекулы в соответствующем состоянии в момент времени *t*, при этом начальные условия $S_A(0)=1$, $S_B(0)=0$.

Из (5) следует, что вероятности обнаружения молекулы в состояниях *А* и *В* выражаются как

$$p_{A} = K_{BA} / (K_{AB} + K_{BA}), \ p_{B} = K_{AB} / (K_{AB} + K_{BA}). \ (6)$$

Для нахождения распределения моментов времени, в которые молекула меняет своё состояние, рассмотрим динамику выхода из состояния *A*. Для этого решим первое уравнение системы (5) без слагаемого $K_{BA}S_B(t)$ [11]. Решением этого уравнения является $f_A(t) = \tau_A^{-1} \exp(-t/\tau_A)$, где $\tau_A = 1/K_{AB}$ - среднее время нахождения в состоянии *A* (рассуждения для *B*состояния аналогичны). Вероятности перехода в противоположное состояние по истечении промежутка времени Δt_A или Δt_B , выразятся как:

$$p_{\Delta t_{A}} = 1 - \exp(-\Delta t_{A} / \tau_{A}), \ p_{\Delta t_{B}} = 1 - \exp(-\Delta t_{B} / \tau_{B}).$$
 (7)

В модели предполагается, что за Δt_A (Δt_B) перемещение молекулы незначительно, поэтому, при постоянном возбуждающем излучении, интенсивность регистрации фотонов от неё также постоянна в течение этого промежутка времени. Тогда поток фотоотсчётов от молекулы будет стационарным потоком Пуассона [12], события которого на [T_0 ; T_m] вычисляются как $t_i = t_{i-1} - \lambda^{-1} \ln \alpha_i$, где λ – интенсивность потока, α – реализация случайной величины с равномерным распределением на [0;1], $t_0 = T_0$. Генерация событий происходит до тех пор, пока не будет превышена граница T_m [13].

Область моделирования (OM) представляет собой прямоугольный параллелепипед, с началом координат в точке пересечения его диагоналей. Моделирование диффузии проводится по методу случайных блужданий: координатам молекул придаются приращения, имеющие гауссово распределение с нулевым математическим ожиданием и дисперсией $\sigma^2 = 2D\Delta t$, где D – коэффициент диффузии молекулы, Δt – время перемещения [14] Для поддержания постоянной концентрации молекул в ОМ используются периодические граничные условия.

Пользуясь предположением о независимости молекул, можно получать поток фотоотсчётов от каждой молекулы по отдельности и затем объединять их в один поток. Вначале молекула с равной вероятностью помещается в одну из точек ОМ и задаётся её начальное состояние по (6). Подсчитывается интенсивность регистрации фотоотсчётов $\lambda(t^{S}_{i})=q_{S}B(\mathbf{r}_{i})$, где t^{S}_{i} - момент перехода молекулы в определённое состояние S (A или B), q_{S} - характеристическая яркость молекулы. Генерируется интервал времени $t^{S}_{i+1}-t^{S}_{i}=\Delta t_{S}=-\tau_{A}\ln(1-\alpha)$. На этом интервале генерируется поток Пуассона с интенсивностью $\lambda(t^{S}_{i})$. Состояние молекулы меняется на противоположное и, в соответствии с процедурой моделирования диффузии при $\Delta t = \Delta t_{S}$, молекула перемещается в новую точку ОМ. Эти шаги повторяются до тех пор, пока t^{S}_{i+1} не превысит заданное время моделирования T.

ЧИСЛЕННЫЕ ЭКСПЕРИМЕНТЫ.

Для доказательства адекватности разработанной модели были проведены численные эксперименты. Параметры функции засветки $\omega_0 = 0,3$ мкм, $z_0 = 0,9$ мкм, константы переходов молекул (Rhodamine 6G в воде [4]) $K_{AB}=1,1$ МГц, $K_{BA}=0,49$ МГц, коэффициент диффузии $D=2,8*10^{-10}$ м²/с. Характеристические яркости $q_A=100$ кГц, $q_B=20$ кГц, концентрация C=0,25 нМ. Размеры ОМ $3\times3\times9$ мкм, время регистрации фотоотсчётов T=100 с. Также проведено моделирование для случая с $q_B=0$.

Для полученных потоков фотоотсчётов были вычислены АКФ, которые были проанализированы по методу ФКС с использованием программы FFS Data Processor [15]. Аппроксимация характеристик основана на поиске минимума критерия χ^2 с помощью метода оптимизации Маркварда-Левенберга [16]. Качество аппроксимации оценивалось по нормированным остаткам [17].

Таблица 1

Параметр	$q_A \neq 0, q_B = 0$		$q_A \neq 0, q_B \neq 0$	
	Задано	Получено	Задано	Получено
τ_{p} , MKC	0,62	0,70±0,06	0,62	0,51±0,09
F	0,75	0,75±0,02	0,43	0,45±0,04
$ au_{D,}$ MKC	80,4	79,6±2,3	80,4	81,4±1,9
Neff	0,068	0,068±0,001	0,068	$0,0672 \pm 0,0004$
Z_0/ω_0	3	3,25±0,22	3	2,82±0,13
χ^2	—	1,36	—	1,02

Результаты анализа полученных потоков

Результаты анализа потоков фотоотсчётов приведены в Таблице 1, из которой видно, что полученные оценки параметров близки к исходным значениям. Графики автокорреляционных функций приведены на рис. 1, из которого видно влияние второго излучательного состояния в микросекундном диапазоне временной задержки. Стремление значений критерия χ^2 к единице и равномерность и величина распределения остатков отно сительно нуля свидетельствует о хорошем качестве аппроксимации АКФ.

выводы.

Разработана имитационная модель потока фотоотсчётов в системах ФФС, учитывающая диффузию и переходы молекул между двумя излучательными состояниями. На основании полученных потоков фотоотсчётов построена АКФ, которая проанализирована с помощью метода ФКС.

Рис. 1. Вид АКФ G(t) и нормированных остатков R(t) при обоих излучательных состояниях молекулы (1) и одном излучательном состоянии (2).

Близость полученных оценок параметров модели к их истинным значениям, значения критерия согласия, вид нормированных остатков показывают адекватность модели в рассмотренных случаях. Разработанная модель может применяться для тестирования методов анализа данных ФФС.

Литература

- 1. *Fogarty K., et. al.*/ Biophys. J., vol. 98, issue 3, suppl. 1, 2010, pp 655a-656a
- Hendrix J., et al./ Biophys. J., vol. 94, №10, 2008, pp. 4103 – 4113
- 3. *Elson E., Madge D.*/ Biopolymers, vol. 13, 1974, pp. 1-27
- 4. *Widengren J., et. al.*/ J. Phys. Chem., vol. 99, 1995, pp. 13368–13379
- 5. Edman L., et. al./ Proc. Natl. Acad. Sci. USA, vol. 93, 1996, pp. 6710-6715
- 6. ConfoCor 3. Laser Scanning Detection Module. Application Manual, 2009, Carl Zeiss.
- 7. Schwille P., et. al./ Biophys. J., vol. 77, 1999, pp. 2251–2265
- 8. Rigler R., et. al./ Eur. Biophys. J., vol. 22, 1993, pp. 169–175
- 9. Krichevsky O., Bonnet G./ Reports on Progress in Physics, vol. 65, 2002, pp. 251-297,
- 10. Malvezzi-Campeggi F., et. al./ Biophys. J., vol. 81, №3, 2001, pp. 1776–1785
- 11. Осадько И. С./УФН, том 176, № 1, 2006, стр. 23-57
- 12. Saleh B., Teich M. Fundamentals of Photonics. New York, 1991, 966 p.
- 13. Апанасович В. В., Коляда А. А., Чернявский А. Ф. Статистический анализ случайных потоков в физическом эксперименте. Минск, 1988, 256 с.
- 14. MacKeown P. K. Stochastic simulation in physics. Singapore, 1997, 456 p.
- 15. Skakun V., et. al./ Eur. Biophys. J., 2005, vol. 34, pp. 323-334
- 16. *Bevington P. R., Robinson D. K.* Data Reduction and Error Analysis for the Physical Sciences. New York, 320 p.
- 17. O'Connor D., Philips D. Time-correlated Single Photon Counting. London, 1984, 288 p.