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Queueing system type GI/M/1 with randomized threshold admission control is 
considered. The stationary distribution at arrival moments and at arbitrary moments is 
calculated. The Little's law is proved for this system. 
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MATHEMATICAL  MODEL 
 

Queueing systems with variable operating conditions are adequate mathematical 
model of processes occurring in many components of modern communication networks and 
computer networks. Some results for systems with threshold admission control type M/G/1, 
GI/M/1 [3, 7], BMAP/G/1 [6], GI/PH/1 [8] and also for other systems [5, 9, 10] were ob-
tained. In this paper, we will consider a queueing system type GI/M/1 with randomized 
threshold admission control; find the stationary probabilities and calculate some character-
istics of this system. 

Consider a single-server queueing system that can work in two modes. The system 
will switch to the first mode if the number of customers in this system is not larger than a 
fixed threshold j , else switch to the second mode in the opposite case. Assume that in the 

ν − mode, the distribution function of inter-arrival times is ( )A tν  with intensity 
1

0

(1 ( ))A t dt

−∞⎛ ⎞
λ = −⎜ ⎟

⎝ ⎠
∫ν  and its Laplace-Stieltjes transform *

0

( ) ( )stA s e dA t
∞

−= ∫ν  while service 

times have exponential distribution with parameter μν . A customer arriving in the 

ν − mode will be accepted with probability pν  or rejected with probability 1 , 1,2.pν ν− =  

Let ni  denote the number of customers in the system immediately before the arrival 

moment of n-th customer. Clearly, 0{ }n ni ≥  is a homogeneous irreducible Markov chain. Let 

1{ | }, , 0ik n np P i k i i i l−= = = ≥  be the one-step transition the one-step transition probability 

of this Markov chain. By the complete probability formula, we easily obtain that, 
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νφ  is the probability when during an inter-arrival time in the 

ν − mode, there are k  customers leaving from the system after completing their services, 
0.k ≥  

 
STATIONARY  PROBABILITIES 

 
Let lim { }, 0l n

n
r P i l l

→∞
= = ≥

 
denote the stationary probability of the Markov chain 

0{ }n ni ≥ . Applying the Chapman – Kolmogorov equation, we have the following recurrent 

relation 
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Solving the system of recurrent relations (1)–(2)–(3) by applying of geometric method, we 
get the following result  

Theorem 1. The stationary probabilities of Markov chain 0{ }n ni ≥  are given by the 

formula 
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where  
1. δ is the unique solution in the interval (0,1)   of the equation 

 *
2 2 2 2( (1 ) ) ( (1 )),p p Aδ = + − δ − δμ  (4)

with the satisfaction of ergodic condition of the Markov chain given by 2
2

2 2

1
.

p

λρ = <
μ
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2. Сoefficients , 0,1,...ka k =  are calculated by their generating function defined by 
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Corollary 1. 1. The loss probability of an arbitrary customer is calculated as 
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2. The mean number of customers in the system immediately before the arrival moment 
of a customer is calculated as 
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Let ti  denote the number of customers in the system at an arbitrary moment t  and nτ  

is the arrival moment of the n-th customer. Let lim { }l t
t

P i l
→∞

π = =  be the stationary probabil-

ity of the random process 0{ }t ti ≥
 . We can easily verify that, process 0{ }t ti ≥

  is a semi-

generative process with embedded Markov renewal chain 0{ , }n n ni ≥τ , i. e. satisfying follow-

ing properties: 

a) For each 0n ∈ , nτ  – is a stopping time for 0{ }t ti ≥
  and ni  is deterministic function of 

{ , };u ni u ≤ τ  

b) 0{ }n ni ≥  is a process on a countable state space E  such that 

1 1 0 0{ , | ,..., , ,..., }n n n n nP i j t i i+ += τ − τ ≤ τ τ 1 1 0{ , | }, ,n n n nP i j t i n j E+ += = τ − τ ≤ ∀ ∈ ∈  

and probability 1 1{ , | } ( ), ,n n n n ijP i j t i i F t i j E+ += τ − τ ≤ = = ∈  is independent of n ; 

c) 
1 11 1 0{ ,..., | , , } { ,..., | }.

n n k kt t k s n n t t kP i j i j i s i i P i j i j i i+ += = ≤ τ = = = = =    
τ τ  

Theorem 2. Let 0{ }t ti ≥
  be a semi-generative process with irreducible and positive re-

current embedded Markov renewal chain 0( , )n n ni ≥τ  with stationary probabilities { }l l Er ∈ . 

Assume that 1 0( | ) ,k
k E

m E i k r
∈

= τ = < ∞∑  then 
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See the proof in [1, с. 211–213], or [2, с. 144–146]. 
Applying the fact in Theorem 2, using method intergral by parts and taking the 

generating functions, we get the following result 
Theorem 3. The stationary probabilities of the process { , 0}ti t ≥  are given by the 

formula 
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If 1 2 ,μ μ=  we can simplify the function to the form  
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Corollary 2. The mean number of customers in the system at an arbitrary moment is 
calculated as 
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SOME  CHARACTERISTICS  OF  THE  SYSTEM 

 
In the next sequence, we assume that  in two working mode of the system, the differ-

ence of two mode is only between the distribution of inter-arrival times and the accepted 
probability 1 2,p p , while service rates of two service mode are identical, i. e. 1 2μ = μ = μ . 

A customer arriving into the system when there are m  other customer, may be loss 
with probability 1 pν−  or accepted to the system with probability pν  ( 1ν = , if 

m j≤ , 2ν =  if 1m j≥ + ) and he will wait until all m  customers, who had arrived into the 
system before him, completing their services. Their waiting times have Erlangian distribu-
tion ( )mE μ . Applying formula of completed probability, we obtain the  stationary distribu-

tion of waiting time of a customer arriving into the system in the form  
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Similarly, function of stationary distribution of sojourn time of a customer arriving into the 
system has the following form 
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Laplace transforms of functions ( ), ( )W t V t  are calculated as 
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Theorem 4. 1. The mean waiting time is calculated as 
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2. The mean sojourn time is calculated as 
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Taking generating functions of V
C
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Consequently, we obtain that. 
Theorem 5. Little’s Law holds true for the abovementioned system, i. e. .V mL=  
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