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An analytical review of models for discrete-valued time series based on high-
order Markov chains is presented. A new model – Markov chain of the order s  with 
r  partial connections ( , )s rMC  − is developed. Computer algorithms of statistical 
analysis for this model are given and analyzed theoretically and on real statistical da-
ta. The results are applicable in computer data analysis and information security. 
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INTRODUCTION 
 
Discrete-valued time series are required for mathematical and computer modeling of 

complex systems and IT in many applied fields [1–12]: in bioinformatics for recognition 
and analysis of genetic sequences, in medical diagnostics, in economics and finance to 
forecast the dynamics of economic and financial indicators, in meteorology to forecast the 
weather, in sociology for modeling of social behavior, in Internet-traffic analysis for opti-
mizing protocols, in computer networks for evolution of information security. 

Discrete-valued time series is a random process tx ∈ A  on some probability space 

( , , )F PΩ  with discrete time t ∈ { }0 0,1,2,=N   and a discrete state space A  with the car-

dinality | |A = N , 2 ≤ ≤ +∞N . If 0=A N  is the countable state space ( N = +∞ ), in the 

literature the models are based on the so-called Integer Autoregression Model of order 
p ∈ 0N  ( ( )INAR p ) determined by a stochastic difference equation [1]  

1

1
1 1

ξ ξ η
t pt xx

t t j tpj t
j j

x
−−

= =

= + + +∑ ∑ ,  t ∈ 0N , 

 

where for all t ∈ 0N  and { }1, ,i p∈  , {ξ :tij j ∈ 0}N  is a sequence of independent identi-

cally distributed Bernoulli ( )1,αiBi  random variables, { }εt  is a sequence of independent 

random variables, and { }ξtij , { }εt , { }0 1, , px x− +  are independent. 

If A  is a finite state space (without loss of generality A { }0,1, , 1= − N , 

2 N≤ < +∞ ), the time series tx  in this case is called in some papers as the categorical time 

series [4]; a review of results is also given in [4]. To treat this case, we propose in the paper 
the small-parametric approach based on high-order Markov chains. 

 
 

LONG-MEMORY  DISCRETE-VALUED  TIME  SERIES 
 
For discrete-valued time series, as for «continious» time series (where ( , )= −∞ +∞A  

is the set of real numbers), much attention is paid now to «long-memory» models. An uni-
versal «long-memory» model for discrete-valued time series tx  is the homogeneous Mar-

kov chain ( )MC s  of the order s ∈ 0N , determined by the generalized Markov property 

( t s> ):  { }1 1 1 1, ,t t t tx i x i x i− −= = = =P  { }
11 1 , , ,, ,P

− −− − − −= = = = 
t s t tt t t t t s t s i i ix i x i x i p ,, 

where s  is  the memory length; 1 2, , , ti i i ∈ A  are values of the process at the time mo-

ments 1,2, , t ; ( )
1, , ,t s t ti i iP p

− −
=   is an ( )1s + -dimensional matrix of one-step transition 

probabilities. Number of independent parameters for the ( )MC s -model increases exponen-

tially w.r.t. the memory length s : ( )( ) 1 .s
sD N N= −MC  

To identify this model we need to have huge data sets and the computation work of 

size ( )1O sN + . To avoid this «curse of dimensionality» we propose to use the «small-

parametric» models of high-order Markov chains that are determined by small number of 
parameters ( )MC sd D . 
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Jacobs-Lewis model is determined by a stochastic difference equation [3] ( t s> ): 
                                                                                                                                                                                                                                                                                                                        

( )μ 1 μ ξ
tt t t t tx x −= + −η ,      (1) 

where { }ξ ,η ,μt t t  are independent random variables with probability distributions: 

 { } { }P μ 1 1 P μ 0 ρt t= = − = = ; { }P ξ πt kk= = , k ∈ A , 
A

π 1k
k∈

=∑ ; (2) 

{ }P η 1 λt i= = , { }1,2, ,i s∈  , 
1

λ 1
s

i
i=

=∑ , λ 0s ≠ . 

Number of parameters depends linearly on s : 1JLD N s= + − . 

In [3] only moments and stationary distributions were analyzed. We proved [6, 7] 
probabilistic and statistical properties of the model (1), (2) by ( )MC s -model. 

Theorem 1. The discrete time series tx  determined by (1), (2) is a homogeneous 

Markov chain of the order s  with the initial probability distribution 
1 1,π π π

s si i i i= ⋅ ⋅   and 

the ( )1s + -dimensional matrix of transition probabilities ( ) ( )
1 1, ,π,λ,ρ

si iP p
+

=  : 

( )
1 , 1 1 1 1, , ,

1

1 ρ π λ δ
s s s s j s

s

i i i i j i i
j

p
+ + − + +

=

= − + ∑  1 1, , si i + ∈ A , 

where ,δ j k  is the Kronecker symbol. 

Corollary 1. Maximum likelihood estimators (MLE)  ( )π,λ,ρ  by the data 

( )1 1, , 'n
nX x x=   are determined by the solution of the maximization problem: 

( ) ( ) ,
π,λ ,ρ

1 1 1

π,λ,ρ ln π ln 1 ρ π ρ λ δ max
t t t j t

s n s

x x j x x
t t t j

l
−

= = + =

⎛ ⎞
= + − + →⎜ ⎟

⎝ ⎠
∑ ∑ ∑ . 

Using these MLE we had constructed [6, 7] the consistent generalized probability ra-
tio test for hypotheses on the true values of parameters ( )ρ,λ,π  in (2). 

Mixture Transition Distribution–model  (MTD-model) was  proposed  in  1985  by  
A. Raftery  [12] as a special small-parametric representation: 

1 , 1 1, , ,
1

λ
s s j s

s

i i i j i i
j

p q
+ +

=

= ∑ , 1 1, , si i + ∈ A ,                        (3) 

where ( ),i kQ q=  is a stochastic ( )N N× -matrix, ,0 1i kq≤ ≤ , , 1
∈

≡∑
A

i k
k

q , ,i k ∈ A , 

( )1, 'sλ = λ λ  is a discrete probability distribution, 1 0λ > . 

The MTDg (generalized MTD)-model: 

1 , 1 1 1

( )
, , ,

1

λ
s s s j s

s
j

i i i j i i
j

p q
+ − + +

=

= ∑ , 1 1, , si i + ∈ A ,                            (4) 

where ( )( ) ( )
,

j j
i kQ q=  is a stochastic matrix for the j -th lag. 

Number of parameters for the MTDg:  ( )( )1 / 2 1 1MTDgD s N N= − + − . 

We have constructed a simple criterion for the ergodicity of the MTD-model and 
found a useful property of the stationary probability distribution [6]. 
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Theorem 2. For the MTDg-model (4), if k N∃ ∈ : ( )( )(1) 0
K

ij
Q > , ,i j∀ ∈ A , then the 

s -dimensional stationary p.d. satiafies the equation 1( , , si i ∈ A ): 

1

1 1
* * ( ) ( ) *

, , , ,
1 00

π π λ π
s s j l s l s l

s s N
j j

i i i l j i i r i r
j l rl

q q
− − −

− −

−
= + ==

⎛ ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑∏ . 

Corollary 2. For the ergodic MTD-model (3) the 2-dimensional stationary p.d. of the 

random vector ( ), 't m tx x−   ( )* * * * *
1π ( ) π π π λ πki k i k s m ki im q− += + − , ,i k ∈ A , 1 m s≤ ≤ . 

Based on Corollary 2 we have constructed statistical estimators for λ , Q  by an ob-

served time series 1 1( , , ) 'n
nX x x=   of the length n : 

1

,
1

1
π δ

2 1 t

n s

i x i
t sn s

− +

= +
=

− + ∑ ; , ,

1
π ( ) δ δ

2 1 t j t

n s j

ki x k x i
t s j

j
n s −

− +

= +

=
− + ∑ ; 

( ) π ( ) / π πki ki k iz j s j= − −   , πki ki id q= −  , , ∈ Ai k ; 2

, ,

( ) /j ki ki ki
i k i k

z s j d d
∈ ∈

= −∑ ∑
A A

λ , 1,...,j s= ; 

kiq = -1 

1

π ( ) /π ( 1)π , if π 0;  else
s

ki k i k
j

j s N
=

⎧ ⎫
− − >⎨ ⎬

⎩ ⎭
∑     .                 (5) 

Theorem 3. For the ergodic MTD-model (3) the estimators Q , λ  determined by (5) 
at n → ∞  are consistent and asymptotically unbiased. 

MLE Q , λ  are solutions of the nonlinear maximization problem: 

1 ,
,λ

1 1

( ,λ) ln λ max
t s j t

n s

j x x
Q

t s j

l Q q
− + −

= + =

= →∑ ∑ .     (6) 

The estimators (5) Q , λ  are used as initial values in the iterative computation of the 

MLEs Q , λ  in (6). Generalized probability ratio test of the asymptotic size (0,1)∈ε  for 
0

0 :H Q Q= , 0λ λ= , 1 0H H=  is constructed as in the previous section.  

 
MARKOV  CHAIN  MC(s, r)  OF  THE  ORDER  s  WITH  r  PARTIAL 

CONNECTIONS  AND  ITS  PROPERTIES 
 
The ( , )MC s r  proposed by Yu. Kharin in 2004 [5] is determined by the following 

small-parametric reparametrization of the ( 1)s + -dimensional transition probability matrix: 

1
1 1 0 0 11

1
, , , , , ,s

s s sm mr
j j j j j jJ

p p q+ + +
= =  ,     (7) 

where 1
1 1 1( , , )s

sJ j j+
+=   is the ( 1)s + -dimensional index vector; r  is the number of con-

nections (1 )r s≤ ≤ ; 0 0 0
1( , , )r rM m m M= ∈  is the integer-valued vector with r ordered 

components, 0 0 0
1 21 rm m m s= < < < ≤ , called the pattern of connections; 1 1 1

1 1
( )+ + +∈

=
Ar r rJ J

Q q  

is an ( 1)r + -dimensional stochastic matrix. If r s= , we have the general ( )MC s  model. 
In [5, 9, 11] the probabilistic properties of the ( , )MC s r -model are found. 
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Theorem 4.  The ( , )MC s r  defined by (7) is an ergodic Markov chain if and only if 

there exists i N∈  such that
2 0 01 11 1 1

1

, , ,
,

1

min 0
A

A
s s i s k sk m k mrs i is i

s

s i

j j j
J J

kJ

q
+ ++ − + −++ +

+

+

∈ =∈

>∑ ∏  . Stationary probability dis-

tribution ( )
1

1

*
s s sJ J ∈

π
A

 satisfies the equations: 1
0 0 12 1
1

1

* *
, , ,s s

sm mr
j j jJ J

j

q+ +
∈

= ∑
A

π π  , 1
1 As sJ + ∈ . 

Corollary 3. For a stationary Markov chain the stationary probability distribution has 

the multiplicative form 
2

* *

1

π πs
i

s

jJ
i=

= ∏ , 1 ∈ As sJ , if and only if 1
1 1

1

* *

A

π π r
r ij j J

j

q ++
∈

= ∑ , 1
2

+ ∈ Ar rJ . 

Corollary 4. If Q  is doubly stochastic: 1
1

1

1+

∈
≡∑

A

rJ
j

q , 1
1

1

1+

+ ∈
≡∑

A

r

r

J
j

q , then the stationary 

probability distribution is uniform: 
1

*π s

s

J
N −≡ . 

 
STATISTICAL  ANALYSIS  BASED  ON  THE  MC(s, r)-MODEL 

 

Introduce the notation: ( ) ( )
1

1
1, 1; ,+ −

+ − + −= 
r

i s
i r i m i mF J M j j  is the selector-function; 

 ( ) ( )1 1 11 1
1 ,; ,

1

; δ δr t s r t s rt r

n s
n

r x jJ F X M J
t

X Mν + + − + +

−

=
= ∑  (8) 

is  the frequency statistic for a pattern rM M∈ ; ( ) ( ){1
1

1
1μ ; ,r

t s r
r t r t sJ

M P F X M J x+
+ −

+= = =  

}1+= rj is the probability distribution of the ( 1)+r -tuple; the dot used instead of any index 

means summation on all its values: ( ) ( )1
1 1

1 A

r r

r

r rJ J
j

M M+

+ ∈

⋅
μ = μ∑ ;  ( )1

1
+μ =rJ rM   

( )1
1

1 ; /( )+= ν −r

n
rJ

X M n s  is the frequency estimator for the probability ( )1
1

+μ r rJ
M , 

1 1
1

+ +∈ Ar rJ , ∈rM M .  

Theorem 5 [5]. If the pattern of connections 0
rM  is know n , then the MLE for the 

matrix Q  is  ( )1
1 11

1

+
+ +∈

=
A

r
r rJ

J
Q q :  1

1
rJq + =  ( )  ( )  ( ){ }1

1 1 1
/ , if 0;  1/  elser r r

o o o
J J Jr r rM M M N+ ⋅ ⋅μ μ μ > . 

Under the stationarity condition { }1
1

1 1
1:+

+ +∈ Ar
r r

Jq J  are asymptotically ( → ∞n ) unbiased 

and consistent with covariances  { } 
1 1 1 1

1 1 1 1

2

,
, /( ) (1/ )+ + + += σ − + ΟCov r r r r

q
J K J K

q q n s n , 


1 1

1 1 1 1, ,r r r r

q

J K J K+ +σ = δ
1 1,r rJ K

δ ( ) ( )1 1
1 11 1 1

0
, /r r r

r rj k rJ K J
q q M+ +

+ + ⋅
δ − μ , 1 1 1

1 1,+ + +∈ Ar r rJ K . 

Moreover, the probability distribution of the 1+rN -dimensional random vector 
( )( )1 1

1 1 11
1

+ +
+ +∈

− −
A

r r
r rJ J

J
n s q q  at → ∞n  converges to the normal probability distribution with 

zero mean and the covariance matrix 
 ( )1 1

1 1,r r
q q

J K+ +Σ = σ . 

The consistent statistical test for the hypotheses 0 :H  0=Q Q , where 

( )1
1 11

1

0 0
+

+ +∈
=

A
r

r rJ J
Q q ; 01 =H H ,  consists of the following steps. 
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1. Computation of the statistics ( )1
1

0
1 ;+ν r

n
rJ

X M , 1 1
1

+ +∈ Ar rJ , by (8).  

2. Computation of the statistic  { }( )1
1 1

0
1 : 0++= ∈ >Ar rrJ J

D j q  

( ) ( )1 1 1
11 1 1

1 1
1

2
0 0 0

1
,

; /+ + +

+

⋅
∈ ∈

ρ = ν −∑
A

rr r r

r r
r rJ

n
r JJ J J

J j D

X M q q q . 

3. Computation of the P -value: 1 ( )= − ρUP G , where ( )⋅UG  is distribution the stan-

dard 2χ - distribution function with ( )
1

1

1
∈

= −∑
A

r

r r
J

J

U D  degrees of freedom. 

4. The decision rule ( ε – asymp. signif. level): if ≥ εP , then to conclude that the hy-
pothesis 0H  is true; otherwise, the alternative 1H  is true. 

Corollary 5.  Under stationary ( , )MC s r  and contigual family of alternatives 1nH : 

1= nQ Q , where ( )1
1 11

1

1 1
+

+ +∈
=

A
r

r r

n n

J J
Q q , 

1
1

1 1
1 1

1 0
1 +

+ +

+
=

−
r

r r

Jn

J J

d
q q

n s
, 1 1

1 1
1

0 0+ +

+ ∈

=∑
A

r r

r

J J
j

d q , 1
11 1

1

0+
+ +∈

>∑
A

r

r r
J

J

d , 

if 1nH  is true, then at → ∞n  the power of the developed test, ,1→ − U aw G  ( )1(1 )− − εUG , 

where , ( )⋅U aG  is the probability distribution function of the noncentral 2χ  distribution with 

U  degrees of freedom and the noncentrality parameter ( )1 1
1 11 1

1

0 2
+ +

+ +∈

= μ∑
A

r r

r r
rJ J

J

a M d . 

Introduce the notation: M  is the set of all admissible patterns rM ; 

( ) ( ) ( ) ( )( )1 1 1
1 1 11 1

1

ln / 0+ + +
+ +

⋅
∈

= − μ μ μ ≥∑
A

r r r

r r
r r r rJ J J

J

H M M M M                      (9) 

is the conditional entropy of the future symbol + ∈ At sx  relative to the past derived by the 

selector ( )1;+ − ∈ At s r
t rF X M , ∈rM M ;  ( )rH M  is the “plug-in” estimator of the condi-

tional entropy, which is generated by substitution of true probabilities ( )1
1

+μ r rJ
M  in (9) by 

their estimators  ( )1
1

+μ rJ rM .  

Theorem 6.  If the order s  and the number of connections r  are known, then the 

MLE   ( )arg min
∈

=
r

r r
M M

M H M . Under the stationarity condition of the ( , )MC s r  the estimator 


rM  at → ∞n  is consistent:  0⎯⎯→P

r rM M . 

Let [ , ]− +∈s s s , [ , ]− +∈r r r , 1 − +≤ < < ∞s s , 1 − + +≤ < <r r s . To estimate the parameters 

r , s  we use the Bayesian Information Criterion (BIC), which has the form [9–11]: 
 ( )( , ) 2( ) ln( )= − + −rBIC s r n s H M U n s ,                               (10) 

where  ( )1
1

1

,0
1

⋅μ
∈

⎛ ⎞= − + δ⎜ ⎟⎝ ⎠∑
A

r
r rJr r

J M
J

U D ,  ( ){ }1
11

1 : 0++= ∈ μ >A rr rJrJ
D j M  

Consistent estimators s , r  are determined by minimization: 
,

( , ) min
s s s r r r

BIC s r
− + − +≤ ≤ ≤ ≤

→ . 
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APPLICATION  OF  THE  MC(s, r)  TO  REAL  STATISTICAL  DATA 
 

The developed algorithms were successfully tested on simulated data and also applied 
to real statistical data [6, 7, 11]. We present here only two examples: in meteorology and in 
genetics. 

Modeling of wind direction. The discrete-valued time series of the daily average 
wind speed at Malin Head (North of  Ireland) during the period 1961–1978 [12] 

{ }0,1,2tx ∈ of the length 6574=n  was fitted by the ( , )MC s r -model for {1,2,...,7}=s , 

{1,2,...,7}=r . Table presents the values of the BIC for the different pairs ( , )s r . 
 

Different modelings of the wind speed data 
 

  Model   BIC   Model   BIC   Model   BIC   Model   BIC 
  MC(1,1)   8127.52   MC(4,2)  8139.12  MC(5,5)  8621.97  MC(7,1)   9041.43 
  MC(2,1)   8777.63   MC(4,3)  8164.79  MC(6,1)  9016.23  MC(7,2)   8163.07 
  MC(2,2)   8096.08   MC(4,4)  8332.77  MC(6,2)  8148.48  MC(7,3)   8197.91 
  MC(3,1)   8849.90   MC(5,1)  8984.10  MC(6,3)  8190.78  MC(7,4)   8323.19 
  MC(3,2)  8079.81  MC(5,2)  8129.83  MC(6,4)  8350.82  MC(7,5)   8599.09 
  MC(3,3)   8143.13   MC(5,3)  8177.92  MC(6,5)  8576.92  MC(7,6)   8973.15 
  MC(4,1)   8956.11   MC(5,4)  8349.62  MC(6,6)  8969.54  MC(7,7)   9575.64 

 

The best fitted model is the (3,2)MC  with the pattern  (1,3)=rM  and the matrix 


0.27  0.08    0     0.22  0.04    0     0.21  0.02    0

' 0.73  0.86  0.63  0.78  0.82  0.52  0.79  0.72  0.43

  0     0.06  0.37    0     0.14  0.48   0     0.26  0.57

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎝ ⎠

Q . 

The fitted model (3,2)MC  detects significant dependencies in the data. 
Genomic sequencing for the drosophila genome sequence (www.fruitfly.org) 4=N , 

55 10= ⋅n . If 1− =s , 8+ =s , 1− =r , 8+ =r , then the best fitted model is the (6,3)MC  with 

the pattern  (1,5,6)=rM  and the matrix Q  visualized in Figyre. Here on « x -axes» the val-

ues of  rM –prehistory are indicated, « y -axes» gives the values of one-step transition prob-
abilities to four states indicated by different levels of grey colors. 

 

 
The matrix Q  for the genomic sequencing 

1 
 
 

0.8 
 
 

0.6 
 
 

0.4 
 
 

0.2 
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The ( , )s rMC  can be also useful in performance evaluation for generators of pseudo-
random sequences [10]. 
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