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The term “group” always means a finite group. In what follows 7 is a set of primes, 7’ is its
complement in the set of all primes, and w(n) is the set of prime divisors of a rational integer n.
A rational integer n is called a 7 -number if w(n) C . For a group G we set 7(G) to be equal
to 7(|G|). A subgroup H of G is called a = -Hall subgroup if #(H) C 7 and n(|G: H|) C «'.
A maximal normal 7 -subgroup of G is denoted by O,(G).

By a classical result, for primes p and ¢ a group G of order p®¢” is solvable and |0,(G)| >
> p*/q”?, except some explicitly determined cases. However, there was a gap in the list of these
cases that was closed by V.S. Monakhov in 1975. V.S.Monakhov extended this Burnside theorem
to solvable groups of order p*m with (p,m) = 1.

In 1967 D.S. Passman proved that a p-solvable finite group G has three Sylow p-subgroups
Py, Py, Py such that Py N PN Py = O,(G). In particular, this means that if the order of G is
equal to p®m, where (p,m) = 1, then |O,(G)| > p*/m?. Using the classification of finite simple
groups, in 1996 V.I. Zenkov proved that the same statement holds for an arbitrary finite group.
In 2005 S. Dolfi proved that if 7 is a set of odd primes and G is a m-solvable group, then for
every m-Hall subgroup H of G there exist z and y € G such that HNH*NHY = 0,(G). |
2007 S. Dolfi and, independently, E.P. Vdovin obtained a similar result for arbitrary =.

There exist finite groups G where the intersection of every 4 conjugate solvable = -Hall
subgroups is greater than O,(G). So we need to take at least 5 conjugate solvable x-Hall
subgroups to get the intersection equal to O,(G).

For a prime p 2= 7 the symmetric group S, contains a non-solvable p’-Hall subgroup S,_..
The intersection of p—2 distinct p’-Hall subgroups is equal to the stabilizer of p—2 points, and so
has order 2. Hence this intersection is not equal to {e} = Op(Sp). This example shows that one
cannot find a fixed number f such that for an arbitrary finite group G with w-Hall subgroups
the intersection of some f distinct conjugate w-Hall subgroups of G is equal to Oy (G).

The aim of our talk is to investigate the following problems.

Problem 1. Let H be a solvable n-Hall subgroup of a finite group G. Do there exist elements
z,y,2,t € G such that HNH*NHYNH* N H = 0,(G)?

Problem 2. Let H be a w-Hall subgroup of a finite group G and p be a minimal element
of TI' Does there exist a function f(p) such that for some elements z,...,Z;;) € G we have
ﬂ ) H% = O, (GQ)7?

In particular, the following theorem is proved.

Theorem 1. Any minimal (subject to inclusion) counterexample to Problem 1 is almost simple.

Note that a complete classification of Hall subgroups in finite simple groups has been recently
obtained by E.P. Vdovin and D.O. Revin. We hope to solve Problem 1 using this classification
and the theorem.
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