$H \leq G$. Then $N_H(A/B) = N_H(A) \cap N_H(B)$ is the normalizer of A/B. If $x \in N_H(A/B)$, then x induces an automorphism of A/B by $Bz \mapsto Bx^{-1}az$. Thus there exists a homomorphism $N_H(A/B) \to \text{Aut}(A/B)$. The image of $N_H(A/B)$ under this homomorphism is denoted by $\text{Aut}_H(A/B)$.

In 2006 the authors proved that a group G with a normal subgroup A satisfies D_π if and only if G/A and A satisfy D_π. So G satisfies D_π if and only if every its composition factor satisfies D_π. We investigate whether $G \in E_\pi$ or $G \in C_\pi$, in terms of the normal structure of G or the composition structure of G.

It is known that if $A \trianglelefteq G$ and $G \in E_\pi$, then G/A and A satisfy E_π. There are examples showing that the reverse statement is not true. In 1986 F. Gross proved that if $1 = G_0 < G_1 < \ldots < G_k = G$ is a composition series of G which is a refinement of a chief series, and $\text{Aut}_G(G_i/G_{i-1}) \in E_\pi$ for all i, then $G \in E_\pi$. We prove the opposite statement, so the following theorem holds.

Teorema 1. Let $1 = G_0 < G_1 < \ldots < G_k = G$ be a composition series of G, which is a refinement of a chief series. Then $G \in E_\pi$ if and only if $\text{Aut}_G(G_i/G_{i-1}) \in E_\pi$ for all $i = 1, \ldots, k$

S.A. Chunikhin in 1952 proved that a group G with a normal subgroup A satisfies C_π if both G/A and A satisfy C_π. It follows from Theorem 1 that $G \in C_\pi$ implies $G/A \in C_\pi$. Known examples show that if $G \in C_\pi$, then A may fail to satisfy C_π. We obtain the following theorem in this direction.

Theorem 1. Let A be a normal subgroup of G. Then $G \in C_\pi$ if and only if $G/A \in C_\pi$ and, for a π-Hall subgroup K/A of G/A, we have $K \in C_\pi$.

The research is supported by SB RAS, Integration project "Groups and graphs", RFBR, project 08-01-00322, and Grants of RF President NS-344.2008.1 and MK-3036.2007.1

WEYL SUBMODULES IN RESTRICTIONS OF SIMPLE MODULES

V.V. Shchigolev

Moscow State University, Russia

shchigolev.vladimir@yahoo.com

Let G be a universal Chevalley group over an algebraically closed field F, $L(\omega)$ be the simple rational G-module with highest weight ω and $\mathfrak{v}^+\omega$, be a highest weight vector of $L(\omega)$. Let $G^{(q)}$ denote the subgroup of G generated by the root elements $x_{\pm \alpha}(t)$, where α is a simple root distinct from a fixed terminal root α_q. We consider the $G^{(q)}$-submodule V of $L(\omega)$ generated by $X_{-\alpha_q,k}v^+\omega$, where $X_{-\alpha_q,k} = X_{-\alpha_q}/k! \otimes 1_F$ and $k < p=\text{char }F$, is considered. For $G = A_l(F)$, we prove that V is isomorphic to a Weyl module if and only if $V \neq 0$ and certain Hom-spaces between Weyl modules equal zero. This allows us to embed Weyl modules into $L(\omega)_{\downarrow G^{(q)}}$ under exact combinatorial conditions.