- 1) $J_{\phi}(z) = \mathbb{N}_1^p$;
- 2) $p \equiv 2 \pmod{3}$, ω or $\omega^* = \frac{p+1}{3}\omega_1$, $J_{\phi}(z) = \mathbb{N}_3^{p-4} \cup \{1, p-1, p\}$;
- 3) ω or $\omega^* = a_k \omega_k + \ldots + a_l \omega_l$, $k \leq l < n-2$, $a_k a_l \neq 0$. a_l or $a_{l-1} + a_l = p-1$, $a_j + a_{j+1} + a_{j+2} \neq 0$ for k < j < l, a_k or $a_{k+1} + a_k = p-1$ for k > 3, $\mathbb{N}_1^p \setminus \{2, p-2\} \subset J_{\phi}(z)$;
- 4) ω or $\omega^* = a_1 \omega_1$, $a_1 > \frac{p+1}{3}$, $\mathbb{N}_1^p \setminus \{2, p-2\} \subset J_{\phi}(z)$;
- 5) $p \equiv 1 \pmod{3}$, ω or $\omega^* = \frac{p-4}{3}\omega_1 + \omega_j$, 1 < j < n, $\mathbb{N}_1^p \setminus \{p-1\} \subset J_{\phi}(z)$.

This research was supported by the Belarus Basic Research Foundation in the framework of project F06-176.

ON Q-CONIC BUNDLES

Yu. Prokhorov

Moscow State University, Moscow, Russia prokhoro@mech.math.msu.su

The talk is based on joint works with Shigefumi Mori [1-3].

A Q-conic bundle is a proper morphism from a threefold with only terminal singularities to a normal surface such that fibers are connected and the anti-canonical divisor is relatively ample. We study the structure of Q-conic bundles near their singular fibers. The complete classification of Q-conic bundles is obtained under the additional assumption that the base surface is singular. In particular, we show that the base surface of every Q-conic bundle has only Du Val singularities of type A (a positive solution of a conjecture by Iskovskikh). Under 6ertain additional assumptions we prove M. Reid's general elephant conjecture.

References

- 1. Mori S., Prokhorov Y. On Q-conic bundles // Publ. RIMS. 2008. V. 44, P 315-369.
- 2. Mori S., Prokhorov Y. On Q-conic bundles, II // arXiv:math. AG/0710.0792, Publ. RIMS (to appear).
- 3. Mori S., Prokhorov Y. On Q-conic bundles, III // in preparation.

EXISTENCE AND CONJUGACY OF HALL SUBGROUPS IN FINITE GROUPS

D.O. Revin, E.P. Vdovin

Sobolev Institute of Mathematics SB RAS, 4 Acad. Koptyg av., 630090 Novosibirsk, Russia {revin,vdovin}@math.nsc.ru

The term "group" always means a finite group. In what follows π is a set of primes, π' is its complement in the set of all primes, $\pi(n)$ is the set of all prime divisors of a rational integer n. A positive integer n is called a π -number if all its prime divisors are in π . For a group G we set $\pi(G)$ to be equal to $\pi(|G|)$. A subgroup H of G is called a π -Hall subgroup if $\pi(H) \subseteq \pi$ and $\pi(|G:H|) \subseteq \pi'$.

According to P. Hall, we say that G satisfies E_{π} (or briefly $G \in E_{\pi}0$, if G contains a π -Hall subgroup. If $G \in E_{\pi}$ and every two π -Hall subgroups are conjugate, we say that G satisfies C_{π} ($G \in C_{\pi}0$). If $G \in C_{\pi}$ and each π -subgroup of G is included in a π -Hall subgroup of G, we say that G satisfies D_{π} ($G \in D_{\pi}0$). Let A, B, H be subgroups of G such that $B \subseteq A$ and