NON-COMMUTATIVE CURVES AND TILTING

I.I. Burban¹, Y.A. Drozd²

¹ Mathematisches Institut Universität Bonn, Beringstr. 1, D-53115 Bonn, Germany burban@math.uni-bonn.de

² Institute of Mathematics, National Academy of Sciences of Ukraine, Tereschenkivska str. 1, 01601 Kyiv, Ukraine drozd@imath.kiev.ua

A non-commutative curve is a pair (X, \mathcal{A}_X) i, where X is a (usual) algebraic curve and \mathcal{A}_X is a sheaf of \mathcal{O}_X -algebras coherent as a sheaf of \mathcal{O}_X -modules. We denote by $\operatorname{Coh}\mathcal{A}_X$ the category of coherent sheaves of \mathcal{A}_X -modules.

Let X be a (usual) projective curve over a field \mathbf{k} such that all its components are rational and all singular points are simple double points, S be the set of singular points of X, $\pi: Y \to \operatorname{char} \uparrow \in \infty X$ be its normalization, Y_1, Y_2, \ldots, Y_s be the irreducible components of Y, all identified with the projective line \mathbb{P}^1 , $\{x', x''\} = \pi^{-1}(x)$ for $x \in S$, $\mathcal{O}_X^* = \pi_* \mathcal{O}_Y$, $\mathcal{M} = \mathcal{O}_X \oplus \mathcal{O}_X^*$ and $\mathcal{A}_X = \mathcal{E} \setminus_{\mathcal{O}_X} (\mathcal{M})$.

Theorem 1. 1. gl.dim. $A_X = 2$, i.e. $\operatorname{Ext}_{A_X}^2$ vanishes.

- 2. $\mathfrak{T} = \mathfrak{O}_X^* \oplus \mathfrak{O}_X^*(1) \oplus \bigoplus_{x \in S} \mathbf{k}(x)[-1]$, where $\mathbf{k}(x)$ is the resudue field of the point x, is a tilting object in the derived category $D^b(\operatorname{Coh}A_X)$, so $D^b(\operatorname{Coh}A_X) \simeq D^b(\mathbf{A}\operatorname{-mod})$, where $\mathbf{A}_X = \operatorname{End}_{D^b(\operatorname{Coh}A_X)}(\mathfrak{T})$.
 - 3. $\mathbf{A}_X \simeq \mathbf{k}\Gamma/I$, where:

 Γ is the quiver (oriented graph) with the set of vertices $S \cup \{y_i, y_i' | 1 \leq i \leq s\}$ and the set of arrows $\{a_Z, b_Z | Z \in C\} \cup \{c_x', c_x'' | x \in S\}$ such that $a_i, b_i : y_i \to y_i', c_x' : x \to y_j$ and $c_x'' : x_k \to y_j$ if $x' \in Y_j$, $x'' \in Y_k$;

I is the ideal of the path algebra $\mathbf{k}\Gamma$ generated by the elements $(\eta_i'a_j - \xi_i'b_j)c_x' = 0$ and $(\eta_i''a_k - \xi_i''b_k)c_x''$, where $(\xi_i':\eta_i')$ and $(\xi_i'':\eta_i'')$ are, respectively, the homogeneous coordinates of x_i' on Y_j and of x_i'' on Y_k .

Note that the algebra A_X first appeared in [1], where the authors showed that its representation type coincides with that of the curve X and asked for an *a priori* explanation of this phenomenon. Theorem 1 gives such an explanation, since the category $\text{Coh}O_X$ naturally embeds into $\text{Coh}A_X$.

We also present generalizations of Theorem 1 for other classes of curves (both usual and non-commutative).

This work was supported by Mathematische Institut Oberwolfach (Program RiP 2008). The second author was also supported by INTAS Grant 06-1000017-9093.

References

1. Drozd Y.A., Greuel G.-M. Tame and wild projective curves and classification of vector bundles // J. Algebra. 2001. V. 246. No. 1. P. 1-54.

MOTIVIC STRUCTURES IN NON-COMMUTATIVE GEOMETRY

D. Kaledin

Steklov Math Institute, Moscow, Russia kaledin@mi.ras.ru

"Non-commutative geometry" is a term with many meanings. I am following the recent usage, which equates non-commutative geometry with "geometry of triangulated categories" — one