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Let k be a pseudoglobal fields of characteristic zero, i.e. an algebraic function field in one
variable with pseudofinite |1] constant field of characteristic zero. It is known [2] that the field k
has the following properties:

1} its cohomological dimension is 2;

2) index and exponent of central simple algebras over k coincide;
3} the maximal ahelian extension of k has cohomological dimension 1;
4) HY(k,G) =1 for any semisimple simply connected linear algebraic group over k.

The results of J.-L. Colliot-Thélene, P. Gille and R. Parimala [3] imply that for lincar algebraic
groups over fields with properties 1)—4) many arithmetical features of lincar algebraic groups over
global fields remain true in this more general situation. Some of such features for linear algebraic
groups over pseudoglobal fields are quoted in the following theorem.

Theorem 1. The group of R -equivalence classes and the defect of weak approzimation are
trivial for simply connected, adjoint, absolutely almost stmple groups, and for inner forms of groups
splitting by a metacyclic extension. They are finite for arbitrary connected linear algebraic group.
Moreover, for a connected linear algebraic group the obstruction to the Hasse principle is a finite
abelian group, and #t is trivial for stmply connected groups. .
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