- 2. Savitskaya T. A., Rezniko I. V., Shcheglov V. A., Tsygankova N. G., Telysheva G. M., & Grinshpan D. D. (2012). Rheological properties of disperse systems based on hydrolyzed lignin and oil. Journal of Engineering Physics and Thermophysics, 85(3). P. 662–667.
- 3. *Вырубов Д. Н.* О методике расчета испарения топлива // Двигатели внутреннего сгорания (МВТУ). 1964. №. 25. С. 41–44.

ВЗАИМОДЕЙСТВИЕ α -ГИДРОКСИЭТИЛЬНЫХ РАДИКАЛОВ С КАРБОНИЛСОДЕРЖАЩИМИ ПРОИЗВОДНЫМИ ФУРАНА И ЦИКЛОПЕНТАНА

И. А. Резцов, С. Д. Бринкевич, О. И. Шадыро

Аскорбиновая кислота является низкомолекулярным водорастворимым антиоксидантом и обеспечивает защиту организма человека от широкого спектра свободнорадикальных процессов повреждения биомолекул. В работе [1] было отмечено, что ключевым элементом аскорбиновой кислоты и ее алкилированных производных, ответственным за реакционную способность по отношению к α-гидроксилсодержащим углеродцентрированным радикалам (α-ГУР), является сопряженная с двойной углерод-углеродной связью карбонильная группа. Целью данной работы было изучение методом стационарного радиолиза взаимодействия ряда структурных аналогов аскорбиновой кислоты — пятичленных циклических кетонов и лакто-нов — с α-гидроксиэтильными радикалами (α-ГЭР), которые являются простейшими представителями α-ГУР.

В работе были использованы циклопентанон, циклопентан-1,3-дион, 3-метилциклопентан-1,2-дион, циклопентан-1,2-дион, циклопентен, циклопентен-2-он-1, γ -бутиролактон, 2(5H)-фуранон и димер дегидроаскорбиновой кислоты (бис-ДГА). Их концентрации в облучаемых этанольных растворах составляли 1×10^{-3} моль/литр. Используемый диапазон поглощенных доз составлял 0,2–4,3 кГр. Полученные экспериментальные данные (Таблица) свидетельствуют о том, что γ -облучение деаэрированного этанола в присутствии насыщен-ных карбо- и гетероциклических карбонильных соединений приводит к изменению соотношения основных продуктов радиолиза в пользу ацетальдегида — продукта окисления α -ГЭР. Общим структурным фрагментом в исследуемых соединениях является карбонильная группа, поэтому она предопределяет их способность взаимодействовать с α -ГЭР по реакции (1). Наблюдается корреляция между количеством карбонильных групп в молекуле и окислительными свойствами соединения.

Дальнейшие превращения продуктов одноэлектронного восстановления исследуемых соединений зависят от их строения.

Таблица
Радиационно-химические выходы образования основных продуктов радиолиза этанола, а также выходы разложения добавок и конечные молекулярные продукты их превращений

Добавка,	Структурная	оду кты на г С	Продукты		
10 ⁻³ моль/дм ³	формула	AA	БД-2,3	Добавка	превращений
Без добавок	-	2,00±0,16	2,15±0,10	-	-
Циклопентанон	\bigcirc	2,50±0,10	1,74±0,07	-0,99±0,07	ОН
γ- Бутиролактон	\int_{\circ}	2,38±0,11	2,12±0,10	-0,62±0,18	-
Циклопентан- 1,3-дион	٥	2,36±0,11	1,28±0,05	-0,20±0,04	-
Циклопентан- 1,2-дион		2,38±0,19	0,19±0,04	-4,73±0,36	
3-метил- циклопентан- 1,2-дион	\(\sigma_{\circ}^{\circ} \)	4,46±0,25	0,21±0,02	-1,77±0,17	OH OH

Продолжение таблицы

Добавка,	Структурная формула	G, молекула/100 эВ			Продукты
10 ⁻³ моль/дм ³		AA	БД-2,3	Добавка	превращений
Циклопентен		3,62±0,48	2,53±0,12	-	ОН
Цикло- пентен-2-он-1	<u></u>	1,70±0,09	0	-8,65±0,21	HO -0
2(5Н)-фуранон	ζ _° ,	2,07±0,55	0	- 62,77±2,62	HO O O
Бис-ДГА	C ₁₂ H ₁₂ O ₁	4,14±0,32	0,12±0,04	- 3,69±0,62	HO H H H H H H H H H H H H H H H H H H

В качестве конечных продуктов радиолиза циклопентанона, циклопентан-1,2-диона и 3-метилциклопентан-1,2-диона нами были идентифицированы соответствующие спирты, которые, вероятно, образуются в результате диспропорционирования радикалов, образующихся в реакции (1). Для енолизируемых дикетонов имеется возможность присоединения α -ГЭР к двойной связи. Действительно, методом хромато-массспектрометрии для циклопентан-1,2-диона зафиксированы соединения, образующиеся в результате присоединения α -ГЭР к двойной связи енола. Однако в случае 3-метилциклопентан-1,2-диона процесс присоединения α -ГЭР не реализуется, вероятно, вследствие стерических препятствий, создаваемых метильной группой.

Для циклопентан-1,3-диона наблюдается низкий радиационно-химический выход разложения добавки и хромато-массспектро-метрически не удается обнаружить каких-либо продуктов радиолиза, что говорит о возможности регенерации соединения.

Механизм радиолиза карбонилсодержащих производных циклопентана и фурана кардинальным образом изменяется при введении в их структуру двойной углерод-углеродной связи. а-ГЭР количес-твенно взаимодействуют с циклопентен-2-оном и 2(5H)-фураноном, поскольку в присутствии этих соединений бутандиол-2,3 не образуется. Кроме того, вещества разлагаются с цепными выходами, а в качестве единственных молекулярных продукта радиолиза образуются аддукты с α-ГЭР. Методом ЯМР показано, что присоединение α-ГЭР к 2(5H)-фуранону происходит преимущественно по С-2 положению. Этому может способствовать предварительное образование межмолекулярной водородной связи между карбонильной группой лактона и гидро-ксильной группой α-ГЭР. В качестве модельного соединения для выяснения эффектов изолированной двойной связи в реакциях с α-ГЭР был выбран циклопентен. Помимо ожидаемого продукта присоединения радикала к двойной связи алкена, было зафиксировано увеличение выхода ацетальдегида и бутанто есть, циклопентен сенсибилизирует радиационнодиола-2,3, индуцированное разложение этанола. Данный эффект может быть связан с возможным взаимодействием алкена с катион-радикалом этанола, образующимся в качестве первичного продукта радиолиза этанола. В этом случае должно происходить увеличение количества α-ГЭР, образующихся в системе и, следовательно, увеличивается радиационнохимический выход основных продуктов радиолиза этанола.

Бис-дегидроаскорбиновая кислота проявляет сильные окислительные свойства в отношении α-ГЭР, так как значительно снижает выход бутандиола-2,3 и увеличивает выход ацетальдегида по сравнению с системой без добавок. При этом происходит раскрытие цикла димера с образованием продукта восстановления — аскорбиновой кислоты — обнаруженной методом высокоэффективной жидкостной хроматографии с масс-спектрометрией.

Таким образом, циклические пятичленные кетоны и лактоны способны окислять α -ГЭР, о чем свидетельствует изменение соотношения основных продуктов радиолиза деаэрированого этанола в пользу ацетальдегида. Циклопентен, присоединяет α -ГЭР по двойной связи и при этом сенсибилизирует радиолиз этанола, увеличивая общий выход продуктов его радиолиза. Основным механизмом взаимодействия циклопентен-2-она-1 и 2(5H)-фуранона с α -ГЭР является присоединение радикальных интермедиатов по двойной углерод-улеродной связи, активированной карбонильной группой.

Литература

1. *Бринкевич С. Д., Шадыро О. И.* Влияние аскорбиновой кислоты и ее производных на радиационно-химические превращения гидроксилсодержащих органических соединений // Химия высоких энергий. 2008. Т. 42. № 4. С. 297–302.