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Àíîòàöiÿ. Äëÿ ñêàëÿðíèõ ôóíêöié ïîáóäîâàíî íîâèé êëàñ àëãåáðà¨÷íèõ iíòåð-
ïîëÿöiéíèõ ìíîãî÷ëåíiâ Åðìiòà-Áiðõîôà äîâiëüíîãî ôiêñîâàíîãî ïîðÿäêó. Îïè-
ðàþ÷èñü íà ïîáóäîâàíèé iíòåðïîëÿöiéíèé îïåðàòîð Åðìiòà-Áiðõîôà îòðèìàíi
ðiçíi ñòðóêòóðè ôîðìóë â ïðîñòîðàõ ãëàäêèõ ôóíêöié òà ìàòðèöü. Òèï ïîëiíî-
ìiàëüíîãî îïåðàòîðà ïîêàçó¹ iíâàðiàíòíiñòü öèõ ôîðìóë.

Abstract. New class of algebraic interpolation Hermite�Birkho� arbitrary �xed
degree polynomials for scalar functions is constructed. On this base interpolation
operator Hermite�Birkho� di�erence structure formulas in space of smooth functi-
ons and matrices are obtained. The type of operator polynomials, for which these
formulas are invariant, is indicated.

1. Introduction
At the construction of interpolation formulas for operators, given on functional spaces,

the known interpolation polynomials for scalar functions can be applied. On the base of
such approach a series of operator interpolation formulas has been obtained [1] � [3]. The
given paper is devoted to further development of this direction.

Let X = Cp([a, b]) be the space p-times di�erentiable on [a, b] ⊆ R functions.
Elements xk ∈ X, k = 0, 1, ..., n, are some given nodes of interpolation. We will de�ne
an operator F : X → Y, where Y is some function space. Through δνF [x; h1, h2, ..., hν ]
we will designate Gateaux di�erential of order ν for operator F at a point x = x(t) ∈ X
in directions hi = hi(t) ∈ X (i = 1, 2, ..., ν; t ∈ [a, b]).

Interpolation Hermite problem for F (x) (x ∈ X) consists in the construction of ope-
rator polynomial Hm(F ; x) ≡ Hm(x) : X → Y of degree not above m, satisfying the
conditions

δβj Hm[xj ; h1, h2, ..., hβj ] = δβj F [xj ; h1, h2, ..., hβj ], (1.1)
βj = 0, 1, ..., αj − 1; j = 0, 1, ..., n; α0 + α1 + · · ·+ αn = m + 1.

The problem of Hermite�Birkho� arises, when in the interpolation condition (1.1) some
from orders of di�erentials βj are absent.

Even for scalar functions the construction of interpolation Hermite�Birkho� formulas
is usually connected with considerable di�culties. In series of cases interpolation Hermite�
Birkho� problem has no solution at all [4] � [6]. Complexities substantially increase at
operator analogue research of this problem.

In this paper we will consider only those operators F (x), for which di�erentials
δνF [x; h1, h2, ..., hν ] contain the product of directions h1, h2, ..., hν . In particular,
if F (x) = f(s, x(t)), where f(s, u) is some scalar function of arguments s ∈ Cm (m ∈ N)
and u ∈ R, di�erentiable with respect to variable u not less, than ν times, then di�erenti-
al δνF [x; h1, h2, ..., hν ] equals ∂ν

∂xν
f(s, x)h1h2 · · ·hν , where x = x(t) and hi = hi(t)

Key words. Algebraic Hermite�Birkho� interpolation, operator interpolation polynomial, interpolati-
on error estimate.
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(i = 1, 2, ..., ν). Many operators of integral type, for example, Hammerstein, Uryson and
others operators, possess this property.

By means of δνF [x; h] we will designate di�erential of order ν, where �rst ν − 1
directions h1, h2, ..., hν−1 are identically equal to unit, and last direction hν = h.

2. Interpolation formulas for functions of scalar argument
At �rst we will consider interpolation Hermite�Birkho� problem of special kind for

scalar functions. Let interpolation nodes t0, t1, ..., tn be di�erent points of numerical axis,
and values f(t0), f(t1), ..., f(tn) of function f(t) and values of its derivatives f (n+j)(t0),
f (n+j)(t1), ..., f (n+j)(tn) of the �xed order n+j, j ∈ N, t ∈ R, be also known. It is required
to construct an algebraic polynomial H2n+j(f, t) ≡ H2n+j(t) of degree not above 2n + j,
satisfying the conditions

H2n+j(tk) = f(tk), H
(n+j)
2n+j (tk) = f (n+j)(tk), k = 0, 1, ..., n, (2.1)

where j is some �xed natural number.
Now we introduce the notations

lnk(t) =
ωn(t)

(t− tk)ω′n(tk)
, ωn(t) = (t− t0)(t− t1) · · · (t− tn); (2.2)

l̃nkj(t) = ynkj(t)−
n∑

ν=0

lnν(t)ynkj(tν), ynkj(t) =
1

(n + j − 1)!

t∫

0

(t− s)n+j−1lnk(s)ds,

(2.3)
where k = 0, 1, . . . , n; j ∈ N.

We notice that ynkj(t) is algebraic polynomial of degree 2n + j and it is possible
to represent l̃nkj(t) in the form l̃nkj(t) = ωn(t)pnkj(t), where pnkj(t) is a polynomial of
degree n + j − 1.

In that case, when j = 1, the solution of investigated problem is known [2] and the
required Hermite�Birkho� polynomial of degree not above 2n + 1 looks like H2n+1(t) =

Ln(t) +
n∑

k=0

l̃nk1(t)f (n+1)(tk), where Ln(t) =
n∑

k=0

lnk(t)f(tk) is the algebraic interpolation

Lagrange polynomial for function f(t), constructed on the nodes t0, t1, ..., tn.

Lemma 2.1 For the algebraic polynomial

H2n+j(t) =
n∑

k=0

[
lnk(t)f(tk) + l̃nkj(t)f (n+j)(tk)

]
, (2.4)

where j is some �xed natural number, the conditions (2.1) are satis�ed. In the case j > 1
the interpolation formula (2.4) is invariant with respect to algebraic polynomials of degree
less or equal n, and for j = 1 it is exact for polynomials of degree not above 2n + 1.

Proof. The �rst group equalities (2.1) hold, because lnk(tν) = δkν , l̃nkj(tν) = 0, where δkν

is the Kronecker symbol; k, ν = 0, 1, ..., n; j ∈ N.
Taking into account, further, that lnk(t) is a polynomial of degree n, we obtain

l
(n+j)
nk (t) ≡ 0 for j ∈ N. Since

l̃
(n+j)
nkj (t) =

dn+j

dtn+j


 1

(n + j − 1)!

t∫

0

(t− s)n+j−1lnk(s)ds


 = lnk(t),
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where k = 0, 1, ..., n; j ∈ N, then H
(n+j)
2n+j (t) =

n∑

k=0

lnk(t)f (n+j)(tk). Hence H
(n+j)
2n+j (tν) =

= f (n+j)(tν), ν = 0, 1, ..., n, i.e. the second group of conditions (2.1) is also satis�ed.
If f(t) = Qn(t) is an algebraic polynomial of degree not above n, then H2n+j(t) coinci-

des with the Lagrange polynomial for the same function f(t) with the same interpolation
nodes and consequently H2n+j(t) ≡ Qn(t). Further it is enough to prove invariance of the
formula (2.4) for the polynomials f(t) = ωn(t)tν (ν = 0, 1, ..., n + j − 1). In this case

f(tk) = 0, k = 0, 1, ..., n, and H2n+j(t) =
n∑

k=0

l̃nkj(t)f (n+j)(tk). From here H
(n+j)
2n+j (t) =

=
n∑

k=0

lnk(t)f (n+j)(tk) ≡ f (n+j)(t), because for considered functions f(t) = ωn(t)tν the

derivative f (n+j)(t) is a polynomial of degree not above n. Therefore r
(n+j)
2n+j (t) ≡ 0 for error

r2n+j(t) = f(t)−H2n+j(t), i.e. r2n+j(t) is an algebraic polynomial of degree less or equal
n+ j−1. According to the interpolation conditions, r2n+j(tk) = 0, k = 0, 1, ..., n. Thus,
the polynomial r2n+j(t) of degree not above n+j−1 is equal to zero in n+1 points. Hence,
only in that case, when j = 1, for the polynomials f(t) = ωn(t)tν (ν = 0, 1, . . . , n) of
degree not above 2n + 1 the error r2n+1(t) ≡ 0.

So, the lemma 2.1 is proved. 2

Note that the interpolation error R2n+j(f ; t) = f(t) − H2n+j(t) can be written as

R2n+j(f ; t) = rn(f ; t)−
n∑

k=0

rn(ynkj ; t)f (n+j)(tk), where rn(g; t) is interpolation remai-

nder for the function g in a point t by means of Lagrange polynomial of degree not above
n with respect to nodes t0, t1, ..., tn. It is known that for functions g ∈ C(n+1)([a, b]),
where [a, b] is minimal segment, containing nodes t0, t1, ..., tn and a point t, interpolati-

on error rn(g; t) can be presented [7] in Lagrange form as rn(g; t) =
g(n+1)(ξ)
(n + 1)!

ωn(t),

ξ ∈ (a, b). Therefore for the interpolation error R2n+j(f ; t) of the constructed interpolati-
on Hermite�Birkho� formula H2n+j(t) one may write

R2n+j(f ; t) =
[
f (n+1)(ξ)−

n∑

k=0

y
(n+1)
nkj (ξk)f (n+j)(tk)

] ωn(t)
(n + 1)!

,

where ξ, ξ0, ξ1, ..., ξn ∈ (a, b), a = min {t0, t1, . . . , tn, t} , b = max {t0, t1, . . . , tn, t} ,
j ∈ N.

3. Interpolation polynomials containing di�erentials of interpo-
lated operator

Further we will consider operator polynomials Pm(x) : X → Y of degree not above m
in the form

Pm(x) = c0(s) +
m∑

q=1

d∫

c

cq(s, t)
dν

dtν
xq(t)dt (ν = 0, 1, ..., p), (3.1)

where c0(s), cq(s, t) are some �xed functions (s ∈ Cα, α ∈ N; t ∈ [c; d] ; q = 0, 1, ..., m).

Note that if F (x) =

d∫

c

cq(s, t)
dν

dtν
xq(t)dt, ν = 0, 1, ..., p; q = 0, 1, ..., m, then

δjF [x; h1, h2, ..., hj ] = (3.2)
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=





q!
(q − j)!

d∫

c

cq(s, t)
dν

dtν
[
xq−j(t)h1(t)h2(t) · · ·hj(t)

]
dt, j ≤ q;

0, j > q.

We assume that functions {xk(t)}n
k=0 ∈ X, used further as interpolation nodes, are

such that xi(t) 6= xj(t) at i 6= j for any t ∈ [a, b] .
Let g(τ, t; x) be a linear on X operator, satisfying the conditions

g(a, t; x) ≡ 0, g(b, t;x) ≡ x(t); τ, t ∈ [a, b], x ∈ X, (3.3)
and for interpolated operator F (x) the equality

δF [x0(·) + g(τ, ·; h); g′τ (τ, ·;h)] = F ′τ (x0(·) + g(τ, ·;h)), h ∈ X, (3.4)
takes place.

Notice that one of the types of linear operators g(τ, t;x) can be de�ned directly through
invertible integral transformations in the space X = Cp([a, b]). In particular, it can be
based on integral Fourier, Abel or others transformations and be presented as

g(τ, s; x) =

τ∫

a

ρ(s, t)ψ(t, x)dt =
{

0, τ = a;
x(s), τ = b.

For each of such transformations function ρ(s, t) and operator ψ(t, x) are de�ned by
corresponding formulas. So, in the case Abel transformation in the space X = C1([a, b]),
operator g(τ, s;x) has the form

g(τ, s;x) =
sin(απ)

π

τ∫

a

χ(s, t)
(s− t)1−α

ψ(t, x)dt, s > a, 0 < α < 1,

where

ψ(t, x) =
d

dt

t∫

a

x(s)
(t− s)α

ds, χ(s, t) =
{

1, s > t;
0, s < t.

Theorem 3.1 For the operator polynomial

H2n+j(F ; x) = F (x0) +
n∑

k=0

δn+jF [xk; l̃nkj(x)]+ (3.5)

+
n∑

k=1

b∫

a

δF [x0(·) + g(τ, ·; xk − x0); lnk(x(·))g′τ (τ, ·; xk − x0)]dτ,

where j is some �xed natural number, lnk(x) ≡ lnk(x(t)) and l̃nkj(x) ≡ l̃nkj(x(t)) are
de�ned by equalities (2.2) and (2.3), in which points t and tk are replaced with the
functions x = x(t) and xk = xk(t) respectively, and for operator g(τ, t; x) relations (3.3)
take place, the following conditions

H2n+j(F ; xk) = F (xk), (3.6)
δn+jH2n+j [xk; h1, h2, ..., hn+j ] = δn+jF [xk; h1, h2, ..., hn+j ], k = 0, 1, ..., n, (3.7)

are satis�ed. In the case j > 1 interpolation formula (3.5) is invariant with respect to
operator polynomials F (x) = Pn(x) of the form (3.1) of degree less or equal n. If j = 1 and
F (x) = P2n+1(x) is operator polynomial of degree not above 2n+1, then H2n+1(F ; x) ≡
≡ P2n+1(x).
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Proof. Since l̃nkj(xν) = 0, and lnk(xν) = δkν for j ∈ N and k, ν = 0, 1, ..., n, then, using
the identities (3.3) end relation (3.4), we obtain

H2n+j(F ; xν) = F (x0) +

b∫

a

δF [x0(·) + g(τ, ·;xν − x0); g′τ (τ, ·; xν − x0)]dτ =

= F (x0) +

b∫

a

F ′τ (x0(·) + g(τ, ·; xν − x0))dτ = F (x0) + F (xν)− F (x0) = F (xν)

for ν = 0, 1, ..., n. Taking into account, further, the following equalities and identities:
δn+j l̃nkj [xi; h1, h2, ..., hn+j ] = l̃

(n+j)
nkj (xi(t))h1(t)h2(t) · · ·hn+j(t) = δkih1(t) · · ·hn+j(t),

δn+j lnk[x; h1, h2, ..., hn+j ] ≡ 0 for j ∈ N and k, i = 0, 1, ..., n, we come to (3.7).
We will prove invariance of the interpolation formula (3.5) with respect to operator

polynomials of the form (3.1). Let

F (x) =

d∫

c

cq(s, t)
dν

dtν
xq(t)dt, (3.8)

where ν = 0, 1, ..., p; q = 0, 1, ..., 2n+ j. For operators (3.8) in the case q = 0, 1, ..., n
the �rst sum in (3.5) is equal to zero, as long as the order of di�erentials n + j > n and
the equality (3.2) holds.

Since
b∫

a

δF [x0(·) + g(τ, ·;xk − x0); lnk(x(·))g′τ (τ, ·; xk − x0)]dτ =

=

b∫

a

q

d∫

c

cq(s, t)
dν

dtν

{
[x0(t) + g(τ, t; xk − x0)]q−1lnk(x(t))g′τ (τ, t; xk − x0)

}
dt dτ =

=

d∫

c

cq(s, t)
dν

dtν





b∫

a

q[x0(t) + g(τ, t;xk − x0)]q−1g′τ (τ, t;xk − x0)dτlnk(x(t))



 dt =

=

d∫

c

cq(s, t)
dν

dtν





b∫

a

d

dτ
[x0(t) + g(τ, t; xk − x0)]qdτlnk(x(t))



 dt =

=

d∫

c

cq(s, t)
dν

dtν
[lnk(x(t))(xq

k(t)− xq
0(t))] dt,

then, using the identity
n∑

k=0

lnk(x(t))xq
k(t) ≡ xq(t), q = 0, 1, . . . , n, we come to equality

H2n+j(F ; x) =

d∫

c

cq(s, t)
dν

dtν

[
xq

0(t) +
n∑

k=1

lnk(x(t))(xq
k(t)− xq

0(t))

]
dt =

=

d∫

c

cq(s, t)
dν

dtν

[
n∑

k=0

lnk(x(t))xq
k(t)

]
dt =

d∫

c

cq(s, t)
dν

dtν
xq(t)dt = F (x).
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For further proof of the theorem it is more convenient to consider operators of the
form

F̃ (x) =

d∫

c

cq(s, t)
dν

dtν
[ωn(x(t))xq(t)] dt, (3.9)

where ν = 0, 1, ..., p; q = 0, 1, ..., n + j − 1.
Notice that if the formula (3.5) is exact for operators (3.9), then it will be exact and

for operators F (x) of the form (3.8) for q = n + 1, n + 2, ..., 2n + j.
Since �rst order di�erential δF̃ [x; h] for the operators (3.9) is evaluated by the rule

δF̃ [x; h] =

d∫

c

cq(s, t)
dν

dtν

{
d

dx
[ωn(x(t))xq(t)]h(t)

}
dt, then second sum in the right-hand

side of formula (3.5) will be transformed to the form

n∑

k=1

b∫

a

δF̃ [x0(·) + g(τ, ·; xk − x0); lnk(x(·))g′τ (τ, ·;xk − x0)]dτ =

=
n∑

k=1

b∫

a

d∫

c

cq(s, t)
dν

dtν

{
d

dx

{
ωn(x0(t) + g(τ, t; xk − x0))[x0(t) + g(τ, t;xk − x0)]q

}
×

×lnk(x(t))g′τ (τ, t; xk − x0)

}
dt dτ =

n∑

k=1

d∫

c

cq(s, t)×

× dν

dtν

{ b∫

a

d

dτ

{
ωn(x0(t) + g(τ, t;xk − x0))[x0(t) + g(τ, t; xk − x0)]q

}
dτlnk(x(t))

}
dt =

=
n∑

k=0

d∫

c

cq(s, t)
dν

dtν

{
[ωn(xk(t))xq

k(t)− ωn(x0(t))x
q
0(t)]lnk(x(t))

}
dt =

=

d∫

c

cq(s, t)
dν

dtν

{ n∑

k=0

lnk(x(t))[ωn(xk(t))xq
k(t)]

}
dt− F̃ (x0).

For operators (3.9) the di�erential

δn+jF̃ [x; h1, h2, ..., hn+j ] =

b∫

a

cq(s, t)
dν

dtν
[ψp(x(t))h1(t)h2(t) · · ·hn+j(t)]dt,

where ψp(x(t)) is algebraic polynomial of degree p (0 ≤ p = n+1+q−n−j = 1+q−j ≤ n)
in regard to x(t). Therefore for �rst sum in (3.5) the equality

n∑

k=0

δn+jF̃ [xk; l̃nkj(x)] =
n∑

k=0

d∫

c

cq(s, t)
dν

dtν

{
ψp(xk(t))l̃nkj(x(t))

}
dt =

=

d∫

c

cq(s, t)
dν

dtν

{ n∑

k=0

l̃nkj(x(t))
dn+j

dxn+j
[ωn(xk(t))xq

k(t)]
}

dt
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takes place. Hence, for the operators (3.9) we �nally obtain H2n+j(F̃ ; x) =

=

d∫

c

cq(s, t)
dν

dtν

{ n∑

k=0

lnk(x(t))[ωn(xk(t))xq
k(t)] +

n∑

k=0

l̃nkj(x(t))
dn+j

dxn+j
[ωn(xk(t))xq

k(t)]
}

dt.

>From here for j = 1 on the basis of proved lemma 2.1 the identity

H2n+1(F̃ ; x) =

d∫

c

cq(s, t)
dν

dtν
[ωn(x(t))xq(t)] dt ≡ F̃ (x)

takes place. The theorem 3.1 is proved. 2

Notice that special case of the formula (3.5), when the operator g(τ, t; x) = τx(t), and
τ, t ∈ [a, b] = [0; 1] and j = 1, is obtained in [2].

Let's designate, further,

Qnk(x) = lnk(x)− ln−1k(x), Gnkj(x) = l̃nkj(x)− l̃n−1kj(x) (k = 0, 1, ..., n + 1; j ∈ N),

where lnn+1(x) = l̃nn+1j(x) ≡ 0.
For the error R2n+j(F ; x) = F (x)−H2n+j(F ; x), where H2n+j(F ; x) is interpolation

polynomial (3.5), the representation

R2n+j(F ; x) =
n+1∑

k=0

δn+jF [xk; Gn+1kj(x)] + (3.10)

+
n+1∑

k=1

b∫

a

δF [x0(·) + g(τ, ·; xk − x0); Qn+1k(x(·))g′τ (τ, ·; xk − x0)]dτ,

where xn+1 = x, takes place. Indeed, R2n+j(F ; xν) = 0 for ν = 0, 1, ..., n. If ν = n + 1,
we obtain

R2n+j(F ; xn+1) = −
n∑

k=1

b∫

a

δF [x0(·) + g(τ, ·; xk − x0); lnk(xn+1(·))g′τ (τ, ·; xk − x0)] dτ+

+

b∫

a

δF [x0(·) + g(τ, ·;xn+1 − x0); g′τ (τ, ·; xn+1 − x0)] dτ −
n∑

k=0

δn+jF
[
xk; l̃nkj(xn+1)

]
=

= [−H2n+j(F ; xn+1) + F (x0)] + [F (xn+1)− F (x0)].

Thus, the equality R2n+j(F ; xn+1) = F (xn+1)−H2n+j(F ; xn+1) is true, i.e. expressi-
on (3.10) really represents interpolation error of operator F (x) by polynomial H2n+j(F ; x)
of the form (3.5).

Notice that the interpolation formula (3.5) belongs to Lagrange's class , i.e. at the
adding a new note in such formula all fundamental interpolation polynomials vary. This
fact is certain shortage of Lagrange's formulas in contrast to polynomials of Newton's
type, in which with increasing number of nodes new items are simplify added to previous
ones.

Now we obtain Newton's variant of the formula (3.5), using identity

H2n+j(F ; x) = F (x0) +
n∑

k=1

4Hk(x), (3.11)
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where 4Hν(x) = H2ν+j(x) − H2(ν−1)+j(x) for ν = 1, 2, ..., n; j ∈ N. Let polynomials
H2k+j(x) (k = 0, 1, ..., n; j ∈ N) are given by the equality (3.5), then for 4Hk(x) we
obtain the representation

4Hk(x) =
k∑

ν=1

b∫

a

δF [x0(·) + g(τ, ·; xν − x0); Qkν(x(·))g′τ (τ, ·; xν − x0)] dτ+

+
k∑

ν=0

δn+jF [xν ; Gkνj(x)] .

Hereinafter we will suppose that for polynomials lk−1k(x) and l̃k−1kj(x), entering the
expressions Qkk(x) and Gkkj(x), the equalities

lk−1k(x) = l̃k−1kj(x) = 0 (k = 1, 2, ..., n; j ∈ N) (3.12)

take place. It allows to formulate the following statement.

Corollary 3.2 The operator

H2n+j(x) = F (x0) +
n∑

k=1

k∑
ν=0

δn+jF [xν ; Gkνj(x)]+ (3.13)

+
n∑

k=1

k∑
ν=1

b∫

a

δF [x0(·) + g(τ, ·; xν − x0); Qkν(x(·))g′τ (τ, ·; xν − x0)] dτ,

where j is some �xed natural number, is Newton interpolation polynomial for operator
F (x), satisfying the conditions (3.6) and (3.7). In the case j > 1 formula (3.13) is invariant
with respect to operator polynomials F (x) = Pn(x) of the form (3.1) of degree less or
equal n. If j = 1 and F (x) = P2n+1(x) is operator polynomial of degree not above 2n+1,
then H2n+1(F ; x) ≡ P2n+1(x).

Note that error representation formula R2n+j(F ; x) = F (x) − H2n+1(F ; x), where
H2n+1(F ; x) is interpolation polynomial (3.13), coincides with the equality (3.10).

4. Formulas containing di�erentials and Stieltjes integrals of
interpolated operator

We construct, further, interpolation operator formulas of other structure, containing
di�erentials and Stieltjes integrals of interpolated operator.

Let's introduce the scalar function

χ(τ, t) =
{

b, τ ≥ t;
a, τ < t,

where a < τ < b, χ(a, t) ≡ a and χ(b, t) ≡ b.
By Q2n+j(x) we de�ne operator polynomial of the form

Q2n+j(x) =
2n+j∑

k=0

b∫

a

ak(s, t)xk(t)dt, (4.1)

where ak(s, t) are some given functions (s ∈ Rα, α ∈ N; t ∈ [a, b] ; k = 0, 1, ..., 2n + j;
j ∈ N).
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Theorem 4.1 For the operator polynomial

H2n+j(F ; x) = F (x0) +
n∑

k=0

δn+jF [xk; l̃nkj(x)]+ (4.2)

+
n∑

k=1

b∫

a

lnk[x(τ)]dτF [x0(·) + g(χ(τ, ·), ·; xk − x0)],

where lnk(x) ≡ lnk(x(t)) and l̃nkj(x) ≡ l̃nkj(x(t)) are the same as in theorem 3.1, and
for operator g(τ, t; x) the relations (3.3) take place, interpolation conditions (3.6) and
(3.7) are satis�ed. In the case j > 1 interpolation formula (4.2) is invariant with respect
to operator polynomials F (x) = Qn(x) of the form (4.1) of degree less or equal n. If
j = 1 and F (x) = Q2n+1(x) is operator polynomial of degree not above 2n + 1, then
H2n+1(F ; x) ≡ Q2n+1(x).

Proof. At x = xν the equalities l̃nkj(xν) = 0, lnk(xν) = δkν take place for integer j ≥ 1
and k, ν = 0, 1, ..., n. Hence

H2n+j(F ; xν) = F (x0) +

b∫

a

dτF [x0(·) + g(χ(τ, ·), ·; xν − x0)] = F (xν),

where ν = 0, 1, ..., n.
Using, as well as earlier, the identities δn+j lnk[x; h1, h2, ..., hn+j ] ≡ 0 and equalities

δn+j l̃nkj [xi; h1, h2, ..., hn+j ] = δkih1(t)h2(t) · · ·hn+j(t) for k, i = 0, 1, ..., n we come
to the relations (3.7).

Let operator F (x) has the form

F (x) =

b∫

a

aq(s, t)xq(t)dt, (4.3)

where degree q = 0, 1, ..., n, then �rst sum in (4.2) will turn into zero, because the order
of the di�erential is equal to n + j > q.

For k-th item of second sum in (4.2) and this type of operators, taking into account
properties of the function χ(τ, t), we get the equality

b∫

a

lnk[x(τ)]dτF [x0(·) + g(χ(τ, ·), ·; xk − x0)] =

b∫

a

lnk[x(τ)]×

×dτ





τ∫

a

aq(s, t)xq
k(t)dt +

b∫

τ

aq(s, t)xq
0(t)dt



 =

b∫

a

aq(s, τ)lnk[x(τ)] {xq
k(τ)− xq

0(τ)} dτ.

From here

H2n+j(F ; x) =

b∫

a

aq(s, t)

[
xq

0(t) +
n∑

k=1

lnk[x(t)] {xq
k(t)− xq

0(t)}
]

dt =

=

b∫

a

aq(s, t)
n∑

k=0

lnk[x(t)]xq
k(t)dt =

b∫

a

aq(s, t)xq(t)dt = F (x).
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For further proof of the theorem, as before, it is more conveniently to consider
operators of the form

F̃ (x) =

b∫

a

aq(s, t)ωn(x(t))xq(t)dt ( q = 0, 1, ..., n + j − 1), (4.4)

since if the formula (4.2) is exact for operators (4.4), then it will be exact and for operators
F (x) of the form (4.3) for q = n + 1, n + 2, ..., 2n + j. The theorem 4.1 is proved. 2

For interpolation error R2n+j(F ; x) = F (x) −H2n+j(F ; x), where H2n+j(F ; x) is a
polynomial of the form (4.2), following representation takes place:

R2n+j(F ; x) =
n+1∑

k=1

b∫

a

Qn+1k[x(τ)]dτF [x0(·) + g(χ(τ, ·), ·; xk − x0)]+ (4.5)

+
n+1∑

k=0

δn+jF [xk; Gn+1kj(x)] .

Here xn+1 = x. Indeed, at nodes xν for ν = 0, 1, ..., n we have R2n+j(F ; xν) = 0. If
ν = n + 1, then we obtain

R2n+j(F ; xn+1) = −
n∑

k=1

b∫

a

lnk[xn+1(τ)]dτF [x0(·) + g(χ(τ, ·), ·; xk − x0)]+

+

b∫

a

dτF [x0(·) + g(χ(τ, ·), ·;xn+1 − x0)]−
n∑

k=0

δn+jF
[
xk; l̃nkj(xn+1)

]
=

= F (xn+1)−H2n+j(F ; xn+1).

Thus, the formula (4.5) really de�nes interpolation error of operator F (x) by polynomi-
al H2n+j(F ; x) of the form (4.2).

Now we obtain Newton's variant of Lagrange formula (4.2). From the equality (4.2),
taking into account the relation (3.12), we have

4Hk(x) =
k∑

ν=1

b∫

a

Qkν [x(τ)]dτF [x0(·) + g(χ(τ, ·), ·;xν − x0)] +
k∑

ν=0

δn+jF [xν ; Gkνj(x)] .

After substitution of this expression into the formula (3.11) we obtain Newton type
formula.

Corollary 4.2 The operator

H2n+j(F ; x) = F (x0)+ (4.6)

+
n∑

k=1

k∑
ν=1

b∫

a

Qkν [x(τ)]dτF [x0(·) + g(χ(τ, ·), ·;xν − x0)] +
n∑

k=1

k∑
ν=0

δn+jF [xν ;Gkνj(x)] ,

where j is some �xed natural number, is Newton interpolation polynomial for operator
F (x), satisfying the conditions (3.6) and (3.7). In the case j > 1 formula (4.6) is invariant
with respect to operator polynomials F (x) = Qn(x) of the form (4.1) of degree less or
equal n. If j = 1 and F (x) = Q2n+1(x) is operator polynomial of degree not above 2n+1,
then H2n+1(F ; x) ≡ Q2n+1(x).
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Interpolation error R2n+j(F ; x) = F (x) − H2n+j(F ; x), where H2n+j(F ; x) is
interpolation polynomial (4.6), coincides with the representation (4.5).

Let, further, X and Y be any normed spaces. We assume, that for di�erentials
δνF [x; h] (ν = 1, 2, ..., n + j; x, h ∈ X) the following inequalities are ful�lled:
‖ δνF [x; h] ‖≤ Mν ‖ h ‖ (0 ≤ Mν < ∞). Let M = max{M1, Mn+j}, where j is
some �xed natural number, then for error (3.10) the estimate

‖ R2n+j(F ; x) ‖≤ M

{
n+1∑

k=1

‖Qn+1k(x)g′τ (τ, ·;xk − x0)‖+
n+1∑

k=0

‖Gn+1kj(x)‖
}

takes place. If function F [x0(·) + g(χ(τ, ·), ·;x)] is of bounded variation on X, then for
the interpolation error (4.5) we come to similar estimate

‖ R2n+j(F ; x) ‖≤ L

{
n+1∑

k=1

‖Qn+1k(x)‖+
n+1∑

k=0

‖Gn+1kj(x)‖
}

, 0 ≤ L < ∞.

One of extremal problems arising here consists in determination of interpolation nodes
xk(t) (k = 0, 1, ..., n) for which the sums of norms in estimates of errors have minimal
value.

5. Some interpolation formulas for functions of matrix variables
The interpolation problem of matrix functions was studied earlier [4] � [6], [8], too.

The construction questions of interpolation matrix polynomials of various structure were
considered both for stationary, and for functional square and rectangular matrices.

The form and basic properties of interpolation matrix Hermite�Birkho� polynomials,
constructed further for functions, given on the set of stationary matrices, are similar to
the interpolation polynomials, constructed earlier for the case of scalar functions.

Let X be a set of stationary square matrices of some �xed size, on which an opera-
tor F : X → X, di�erentiable on X in the Gateaux sense, is de�ned, and interpolation
nodes A0, A1, ..., An be scalar matrices from X, such that Ak = αkI, where αk is some
pairwise di�erent numbers (k = 0, 1, ..., n), and element I ∈ X is identity matrix.
Let also values F (A0), F (A1), ..., F (An) of operator F (A) and values of its Gateaux di-
�erentials δn+jF [Ak; h1, h2, ..., hn+j ] of some �xed order n + j, in directions hν ∈ X
(ν = 1, 2, ..., n + j; j ∈ N) are known. It is required to construct a matrix algebraic
polynomial H2n+j(F, A) ≡ H2n+j(A) of degree not above 2n + j with numerical coe�ci-
ents, satisfying the conditions

H2n+j(F ; Ak) = F (Ak), (5.1)

δn+jH2n+j [Ak; h1, h2, ..., hn+j ] = δn+jF [Ak; h1, h2, ..., hn+j ], (5.2)

where k = 0, 1, ..., n, and j is given natural number.
Let's de�ne, as well as earlier, the algebraic polynomial ynkj(t) of degree 2n + j with

respect to scalar variable t by equality ynkj(t) =
1

(n + j − 1)!

t∫

0

(t − s)n+j−1lnk(s)ds,

where k = 0, 1, . . . , n; j ∈ N.
Now we introduce the notations

lnk(A) =
A− α0I

αk − α0
· · · A− αk−1I

αk − αk−1
· A− αk+1I

αk − αk+1
· · · A− αnI

αk − αn
, (5.3)
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l̃nkj(A) = ynkj(A)−
n∑

ν=0

lnν(A)ynkj(Aν), (5.4)

where k = 0, 1, . . . , n; j ∈ N.
Let's assume that the independent variable A and directions h1, h2, ..., hn+j , entering

the interpolation conditions (5.2), are mutually permutable.
Note that in the case j = 1 the required Hermite�Birkho� polynomial of degree not

above 2n + 1 is constructed in [4] in the form

H2n+1(A) =
n∑

k=0

{lnk(A)F (Ak) + δn+1F [Ak; l̃nk1(A)]}.

It is proved that the corresponding interpolation formula is exact for matrix algebraic
polynomials of degree less or equal 2n + 1 with numerical coe�cients.

Theorem 5.1 For the matrix polynomial

H2n+j(F ; A) =
n∑

k=0

[
lnk(A)F (Ak) + δn+jF [Ak; l̃nkj(A)]

]
, (5.5)

where j is some �xed natural number, the conditions (5.1) and (5.2) are satis�ed. In
the case j > 1 interpolation formula (5.5) is invariant with respect to matrix algebraic
polynomials of degree less or equal n, and for j = 1 it is exact for a matrix polynomials
of degree not above 2n + 1 with numerical coe�cients.

Proof. The equalities (5.1) follows from the relations lnk(Aν) = δkν , l̃nkj(Aν) = 0 for
k, ν = 0, 1, ..., n; j ∈ N.

Taking into account, further, that lnk(A) is a matrix polynomial of degree n, we
obtain l

(n+j)
nk (A) ≡ 0 for k = 0, 1, ..., n, and any natural value j. Besides, on account of

requirement indicated above in regard to the permutability of matrices A and directions
h1, h2, ..., hn+j , we have δn+j l̃nkj [Aν ; h1, h2, ..., hn+j ] = δkνh1h2 · · ·hn+j for k, ν =
0, 1, ..., n; j ∈ N. It proves that for the formula (5.5) relations (5.2) will be ful�lled.

Let Qn(A) be a matrix polynomial of degree not above n with numerical coe�cients. If
F (A) = Qn(A), then the formula (5.5) coincides with interpolation polynomial Lagrange
and, hence, H2n+j(F ; A) ≡ Qn(A). Invariance of the formula (5.5) for matrix polynomials
of degree not above 2n + 1 in the case j = 1, as it was already noted, established in [4].
The theorem 5.1 is proved. 2

Example 1. Let F (x) =

b∫

a

K[s, t, x(t)]dt is Uryson operator, and interpolation nodes

xk(t) ∈ C[a, b], k = 0, 1, ..., n. Then di�erential δνF̃ [x; h] =

b∫

a

K(ν)
x [s, t, x(t)]h(t)dt,

ν = 1, 2, ..., n + m, and Hermite�Birkho� interpolation polynomial (3.5), where the
operator g(τ, t; x) = τx(t), and τ, t ∈ [0; 1], takes the form

H2n+j(F ; x) =
n∑

k=0

b∫

a

{
K[s, t, xk(t)]lnk(x(t)) + K(n+j)

x [s, t, xk(t)]l̃nkj(x(t))
}

dt.

It is easy to notice that obtained polynomial satis�es the interpolation conditions (3.6)
and (3.7), where j ∈ N.
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In summary we will note that a series of interpolation similar type formulas is obtai-
ned in [3] � [4], and the theory of operator interpolation is fully enough investigated in
monography [5], in which, in particular, special cases of Hermite�Birkho� interpolation
problem are also considered.

This research was �nancially supported by Belarusian Republican Foundation for
Fundamental Research (the project � Ô09Ê - 005).
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