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OPERATOR INTERPOLATION HERMITE-BIRKHOFF FORMULAS
IN SPACES OF SMOOTH FUNCTIONS
UDC 519.65

L.A.YANOVICH AND M.V.IGNATENKO

AHOTAIIA. Jna ckanapaux GyHKIIH m00y10BaHO HOBUH KJIac anredpalyHux iHTEp-
nonganiitnux muorovienis Epumira-Bipxoda nosinbroro dikcosanoro nopsaky. Oru-
parounch Ha mobOymoBaHwmil iHTeprossmiiinuii omeparop Epwmira-Bipxoda orpmmani
pi3Hi cTpyKTYpHu HOPMYT B IPOCTOPAX IVIAJKUX (DYHKINH Ta MATPHUIh. THIT TOTIHO-
MiaJIbHOTO OIIePATOPA MOKA3y€ IHBAPIAHTHICTH X HOPMYJI.

ABSTRACT. New class of algebraic interpolation Hermite—Birkhoff arbitrary fixed
degree polynomials for scalar functions is constructed. On this base interpolation
operator Hermite—Birkhoff difference structure formulas in space of smooth functi-
ons and matrices are obtained. The type of operator polynomials, for which these
formulas are invariant, is indicated.

1. Introduction

At the construction of interpolation formulas for operators, given on functional spaces,
the known interpolation polynomials for scalar functions can be applied. On the base of
such approach a series of operator interpolation formulas has been obtained [1] — [3]. The
given paper is devoted to further development of this direction.

Let X = CP([a, b]) be the space p-times differentiable on [a, b] C R functions.
Elements z; € X, k=0, 1, ..., n, are some given nodes of interpolation. We will define
an operator F': X — Y, where Y is some function space. Through 6" F[x; hy, ha, ..., h,]
we will designate Gateaux differential of order v for operator F at a point z = z(t) € X
in directions h; = h;(t) € X (1 =1, 2, ..., v; t € [a, b]).

Interpolation Hermite problem for F(x) (x € X) consists in the construction of ope-
rator polynomial H,,(F; x) = Hp(z) : X — Y of degree not above m, satisfying the
conditions

5Bme[Ij; h17 hg, ceey hgj] :(SBJF[IJ, hl, h27 ) hﬁj], (11)

ﬁj:O, 1, ceey Oéj—l;j:O, 1, ceey TS ao—l—al—l—---—i—an:m—i—l.

The problem of Hermite-Birkhoff arises, when in the interpolation condition (1.1) some
from orders of differentials 3; are absent.

Even for scalar functions the construction of interpolation Hermite—Birkhoff formulas
is usually connected with considerable difficulties. In series of cases interpolation Hermite—
Birkhoff problem has no solution at all [4] — [6]. Complexities substantially increase at
operator analogue research of this problem.

In this paper we will consider only those operators F'(z), for which differentials
" Flx; hy, ha, ..., h,] contain the product of directions hy, ha, ..., h,. In particular,
if F(x) = f(s, x(t)), where f(s, u) is some scalar function of arguments s € C™ (m € N)
and u € R, differentiable with respest to variable u not less, than v times, then differenti-

al 8" Flx; hy, ha, ..., hy] equals @f(s, x) hihg - -+ hy,, where x = x(t) and h; = h;(t)

Key words. Algebraic Hermite—Birkhoff interpolation, operator interpolation polynomial, interpolati-
on error estimate.
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(i=1, 2, ..., v). Many operators of integral type, for example, Hammerstein, Uryson and
others operators, possess this property.

By means of 6" F[z; h] we will designate differential of order v, where first v — 1
directions hy, hs, ..., hy_1 are identically equal to unit, and last direction h, = h.

2. Interpolation formulas for functions of scalar argument

At first we will consider interpolation Hermite—Birkhoff problem of special kind for
scalar functions. Let interpolation nodes tq, t1, ..., t, be different points of numerical axis,
and values f(to), f(t1), ..., f(tn) of function f(t) and values of its derivatives f("+7)(ty),
fOrD(ty), ..., ) (t,) of the fixed order n+74, j € N, t € R, be also known. It is required
to construct an algebraic polynomial Hop;(f, t) = Honyj(t) of degree not above 2n + j,
satisfying the conditions

H2n+j(tk) = f(tk)a HQ(Zi;) (tk) = f(n+j)(tk)7 k=0,1, .., n, (21)

where j is some fixed natural number.
Now we introduce the notations

wn(t)

Ln(t) = —— () = (E—to)(t—t1) - (t—t): 2.2
t
lnkj(t _ynk:j Zlnl/ ynkj 7 ynk](t) +]71 '/ n+j_1lnk¢(s)ds7
0
(2.3)
where k=0, 1, ..., n;j€N.

We notice that Ynk;(t) 18 algebraic polynomial of degree 2n + j and it is possible
to represent lnkj( ) in the form lnkj( ) = wn(t)Pnk;j(t), where png;(t) is a polynomial of
degree n +j — 1.

In that case, when j = 1, the solution of investigated problem is known [2] and the
required Hermlte Birkhoff polynomlal of degree not above 2n + 1 looks like Ho,11(t) =

)+ Z Lk (t f(7l+1)(tk) where L, Z Lok (t) f(t) is the algebraic interpolation
k=0
Lagrange polynomial for function f(t), constructed on the nodes tg, t1, ..., tn-

Lemma 2.1 For the algebraic polynomial

n

Hapyj(t) = Z [lnk(t)f(tk) +l~nkj(t)f(n+j)(tk) , (2.4)

k=0

where j is some fixed natural number, the conditions (2.1) are satisfied. In the case j > 1
the interpolation formula (2.4) is invariant with respect to algebraic polynomials of degree
less or equal n, and for j =1 it is exact for polynomials of degree not above 2n + 1.

Proof. The first group equalities (2.1) hold, because l,x(¢t,) = dkv, Tnkj (t,) = 0, where O,
is the Kronecker symbol; k&, v =0, 1, ..., n; 7 € N.

Taking into account, further, that l,x(¢t) is a polynomial of degree n, we obtain
lflzﬂ)(t) =0 for j € N. Since

. t
) oy AV / syntic1 _
0
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where k=0, 1, ..., n; j € N, then Hz(Zi;) (t) = Zlnk(t)f(”+j)(tk) Hence HQ(Zii)(t,,) =
= ft(t,), v =0, 1, ..., n, i.e. the second group of conditions (2.1) is also satisfied.
If f(t) = Q. (t) is an algebraic polynomial of degree not above n, then Ha,,;(t) coinci-
des with the Lagrange polynomial for the same function f(¢) with the same interpolation
nodes and consequently Ho,;(t) = @, (t). Further it is enough to prove invariance of the
formula (2.4) for the polynomials f(t) = wn(t)t” (v=0,1, .., n+j—1). In this case

ftr) =0,k=0,1, ..., n, and Hy,4;(t) Zlnk () f "9 (t,). From here Hyr 7 (t) =

= Zlnk(t)f("“)(tk) = () (1), because for considered functions f(t) = wy(t)t” the
derivative f("*7)(t) is a polynomial of degree not above n. Therefore réﬁfj) (t) = 0 for error
Tont;(t) = f(t) — Hapt;(t), L. rans;(t) is an algebraic polynomial of degree less or equal
n+j— 1. According to the interpolation conditions, ron4;(tx) =0, k=0, 1, ..., n. Thus,
the polynomial 72,4 ;(t) of degree not above n+j—1 is equal to zero in n+1 points. Hence,

only in that case, when j = 1, for the polynomials f(t) = w,(t)t¥ (v =0, 1, ..., n) of
degree not above 2n + 1 the error rop,41(t) = 0.

So, the lemma 2.1 is proved. O

Note that the interpolation error Ron+;(f; t) = f(t) — Hapnt;(t) can be written as
Ronyj(f5 t) =ma(f5 t Zrn (Ynkj; 1) fF9) (1), where 7,(g; t) is interpolation remai-
nder for the function g in a pomt t by means of Lagrange polynomial of degree not above
n with respect to nodes tg, t1, ..., t,. It is known that for functions g € C*+([a, b]),
where [a, b] is minimal segment, containing nodes tg, t1, ..., t, and a point ¢, interpolati-

9" to(E)

on error r,(g; t) can be presented [7] in Lagrange form as r,(g; t) = 1) wn (1),
n !

¢ € (a, b). Therefore for the interpolation error Ra,+;(f; t) of the constructed interpolati-
on Hermite-Birkhoff formula Hy,;(t) one may write

(F ) — (n+1) (n+1) (nt4) (¢ L(t)
R (0= |1 Zy SRR I
where &, &, &1, .oy En € (a, b), a = min{tg, t1, ..., tn, t}, b=max{to, t1, ..., tn, t},

jEN.

3. Interpolation polynomials containing differentials of interpo-
lated operator

Further we will consider operator polynomials P, (z) : X — Y of degree not above m
in the form

d
m du
P (z) = co(s)—i-Z/cq(s, t)——zi(t)dt (v=0, 1, ..., p), (3.1)
= dt
where ¢o(s), ¢q(s, t) are some fixed functions (s € C*, a € N; t € [¢; d]; ¢ =0, 1, ..., m).
d

dV
Note that if F(z) = /cq(s t)dt 2i(t)dt, v=0, 1, ..., p; ¢ =0, 1, ..., m, then

(&

(SJF[I, hl, hg, ceey hj] = (32)
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d

¢! L j ;
_ m/cq(& ')@ (2977 (t)hy (£)ha(t) - - - hi(t)] dt, j < ¢
0, J>q
We assume that functions {x(t)}7_, € X, used further as interpolation nodes, are
such that x;(t) # x;(t) at ¢ # j for any t € [a, b].
Let g(7,t;x) be a linear on X operator, satisfying the conditions

gla,t;2) =0, g(b,t;x) = z(t); 7,t € [a, b, x € X, (3.3)
and for interpolated operator F(z) the equality
0F[xo(-) +g(,1h); o (7, h)] = Fl(z0(-) + g(,1h)), h € X, (3-4)

takes place.

Notice that one of the types of linear operators g(7, t; ) can be defined directly through
invertible integral transformations in the space X = C?([a, b]). In particular, it can be
based on integral Fourier, Abel or others transformations and be presented as

0, 7T=a

g(r,57) = / pspteaa={ b Ty

a

For each of such transformations function p(s,t) and operator (¢, z) are defined by
corresponding formulas. So, in the case Abel transformation in the space X = C*([a, b]),
operator g(7, s;x) has the form

g(7,8;2) = smgrcwr) / ( 4C)) Y(t,z)dt, s>a, 0 <a<l,

s—t)l-«
where .
W(t,z) = %/ (tx_(sg,))ads’ X(s,t) = { (1): ) z i
Theorem 3.1 For the operator polynomial
Hoptj(F; ) = F(x0) + zn:(S"Jer[xk.; E,,kj (x)]+ (3.5)

k=0

n b
+ Z/éF[azo(-) +9(1, 52k — 20); Lk (x() g (7, 28 — 20)]dT,
k=1

where j is some fixed natural number, lni(2) = lu(2(t)) and lokj(z) = L (2(t)) are
defined by equalities (2.2) and (2.3), in which points t and t; are replaced with the
functions x = x(t) and x, = x1(t) respectively, and for operator g(t, t;x) relations (3.3)
take place, the following conditions

Honyj(F; x) = F(ap), (3.6)
6" Hop jwrs; hay By vy Bgy] = 8" Flag; ha,y hay ooy hoyyl, K=0, 1, oo, n, (3.7)

are satisfied. In the case j > 1 interpolation formula (3.5) is invariant with respect to
operator polynomials F(z) = P,(x) of the form (3.1) of degree less or equaln. I j = 1 and
F(x) = Papy1(x) is operator polynomial of degree not above 2n+ 1, then Hopyq (F; x) =
= P2n+1(17).
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Proof. Since Tnkj(x,,) =0, and [,k (z,) =0, for j e Nand k, v =0, 1, ..., n, then, using
the identities (3.3) end relation (3.4), we obtain

b
Honyj(F; x) = Fxo) + /5F[$o(') +9(7, 32 — x0); gy (7,52, — xo)|dT =

b

= F(xz0) + /F;(xo() +9(7, 52, — 20))dT = F(a0) + F(z,) — F(x0) = F(z,)

a

for v =0, 1, ..., n. Taking into account, further, the following equalities and identities:
0 T wis b, By ooy ] = Lot (3(0)ha (D)ha(t) -+l (£) = Skaha (8) -+~ Py (1),
8" ilklx; by, ha, ..y hugj] =0for j € Nand k, i =0, 1, ..., n, we come to (3.7).

We will prove invariance of the interpolation formula (3.5) with respect to operator
polynomials of the form (3.1). Let

d
v

F(z) = /cq(s, t)%xq(t)dt, (3.8)

C

where v =0, 1, ..., p; ¢ =0, 1, ..., 2n+j. For operators (3.8) in the case ¢ =0, 1, ..., n
the first sum in (3.5) is equal to zero, as long as the order of differentials n + j > n and
the equality (3.2) holds.

Since
/5F[$0(-) +9(m 52k = 20); Ink(2())g7 (7,5 21 — @0)]dT =
b d "
= /Q/Cq(S, t) T {[xo(t) + (1t — 20)]7 Han (2(t)gl (7, t; 2 — xo)}dt dr =
d ” b
= /Cq(S, t)@ /q[xo(t) +g(1,t; 08 — 20)]9 Vgl (7, b oh — 20)dT g (2(1)) ¢ dt =
d b
@ | rd ,
= [ ¢4(s, t)@ E[xo(t) + g(1,t 2 — 20)] 9Tl (2(t)) p dt =
d d”
— [ cals. 05 (@) k() - ste)] at,
then, using the identity Z Lok (2(t))zi(t) = 29(t), ¢ =0, 1, ..., n, we come to equality

k=0

d n
Hanss (5 ) = [ cals, 05 [xz(mzznk(x(t))(xzu)—x3<t>> dt =
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For further proof of the theorem it is more convenient to consider operators of the
form

Fa) = [ ea(s, 05 lon(a(®)a?(0] . (3.9

where v =0, 1, ..., p; ¢=0,1, ..., n+j— 1

Notice that if the formula (3.5) is exact for operators (3.9), then it will be exact and
for operators F(z) of the form (3.8) forq=n+1, n+2, ..., 2n+ j.

Since first order differential §F[x; h] for the operators (3.9) is evaluated by the rule

. a (d
OF[x; h] = /cq(s t)— I {d [wn(:c(t))xq(t)]h(t)} dt, then second sum in the right-hand

side of formula (3.5) will be transformed to the form

3

/5F[$0(') +9(7, 2k — 20); L (@(-)) g (T, 5 21 — o) ]dT =
k=17,

n b d y

= [ t)jty{j;{wmo(t) gl tion — ao)ao(®) + g(r. i — o)} ¢
n d
Xk (z(8))ge (T, t; 2 — xo)}dt dr = Z/cq(s, )X
k=1 -
d” / d

thu{/ E{wn(mo(t) +9(7, t; 2k — 20)) [0 (1) + 97, t; 78 — !Eo)]q}dTlnk({)S(t))}dt =

n d dV
=3 / s, 1) 2 { [wn (@e ()] (1) = wn (20D O L (2(8)) bt =

cq(s, t) dtV{Zznk Vwn (x5 () (t)]}dt—ﬁ(xo).

\&

For operators ( .9) the differential

b
6n+jﬁ‘[x§ hi, ho, .., hn+j] = /Cq(sa t)dt’/ [’(/}:D( ( )) ( )hQ(t)"'hn+j(t)}dta

a

where 1, (x(t)) is algebraic polynomial of degree p (0 < p =n+1+q¢—n—j =14+q¢—3j <n)
in regard to x(t). Therefore for first sum in (3.5) the equality

n

S8 Flog; g (0] = 3. / s 0) 55 {0l o (0) et =

k=0 k=0

dnti

d n
= [eatss 05 {3 Ty @l s om0 0]

k=0
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takes place. Hence, for the operators (3.9) we finally obtain Hop4;(F; @) =

d

n+j
/ eo(s: 1) dtu{zznk Y aa(t +Zznk] ) om0 ()]}t

>From here for j = 1 on the basis of proved lemma 2.1 the identity

d
v

Hana(Fi ) = [ cyfs. )5 lon(e@)a"(0) i = Fla)

(&

takes place. The theorem 3.1 is proved. O
Notice that special case of the formula (3.5), when the operator ¢g(7,t;x) = Tx(t), and
7,t € [a, b] = [0; 1] and j = 1, is obtained in [2].
Let’s designate, further,

Qui (@) = () = by 16(2), Goij (@) = ks (2) = ln_1kj(x) (k=0, 1, ..., n+1; j €N),

where 1,41 (2z) = Tn,L+1j(x) =0.
For the error Ropyj(F; x) = F(x) — Honyj(F; @), where Hopyj(F; ) is interpolation
polynomial (3.5), the representation

n+1
Ronyj(F5 ) =Y 6" F [ Gpyans (2)] + (3.10)
k=0

n+1

+Z/5F zo(-) + 9(7, 2% — T0); Quiik(x ())g;(ﬂ'éxk — xo)]dr,

where x,, 11 = , takes place. Indeed, Ropy;(F; 2,) =0forv=0, 1, ..., n. fvr=n+1,
we obtain

b
R2n+] (F xn+1 /5F Ty 3Tk — IO); lnk($71+1('))g;(7—7 STk — 170)] d7_+

b

/5F To )+g( T, 7'I7)+1—I0) gT( Ty Tn41 _IO d7_257l+JF |:1Ek, l“k‘J(IW"rl) =
k=0

= [~ Hanyj(F; Tng1) + F(2o)] + [F(2ny1) — F(wo0)].

Thus, the equality Ron+j(F; Tny1) = F(@nt1) — Hontj(F; Tpt1) is true, ie. expressi-
on (3.10) really represents interpolation error of operator F'(x) by polynomial Hop4;(F'; )
of the form (3.5).

Notice that the interpolation formula (3.5) belongs to Lagrange’s class , i.e. at the
adding a new note in such formula all fundamental interpolation polynomials vary. This
fact is certain shortage of Lagrange’s formulas in contrast to polynomials of Newton’s
type, in which with increasing number of nodes new items are simplify added to previous
ones.

Now we obtain Newton’s variant of the formula (3.5), using identity

Honyj(F; ) = F(zo) + Y AHy(), (3.11)
k=1
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where AH, (x) = Hayyj(x) — Hy—1)4,(x) for v =1, 2, ..., n; j € N. Let polynomials
Hopyj(z) (=0, 1, ..., n; j € N) are given by the equality (3.5), then for AH}(z) we
obtain the representation

b
AHy(z) = Z/(SF [0(-) + g(7, 20 — x0); Qru(x(:))g(T, 2 — o) dT+

v=1

k
+ " F [z, Gruj(x)].
v=0
Hereinafter we will suppose that for polynomials l;_1x(z) and ﬁ,lkj(x)7 entering the
expressions Qpr(x) and Gpi;(x), the equalities

Leo1p(z) = lh1pj(2) =0 (k=1, 2, ..., n; j €N) (3.12)
take place. It allows to formulate the following statement.

Corollary 3.2 The operator

n k
Honyj(z) = Flag) + > Y 6" F [3,5 Grojla)] + (3.13)
k=1v=0

n k b
+ZZ/5F [:L'O() +g(7—7';xu _xO); Qku(x('))g‘/r(ﬂ';wu —LC())] dr,

k=1v=1%

where j is some fixed natural number, is Newton interpolation polynomial for operator
F(z), satisfying the conditions (3.6) and (3.7). In the case j > 1 formula (3.13) is invariant
with respect to operator polynomials F(x) = P,(x) of the form (3.1) of degree less or
equal n. If j = 1 and F(x) = Pay,+1(x) is operator polynomial of degree not above 2n+1,
then H2n+1(F; :E) = P2n+1(1‘).

Note that error representation formula Rs,;(F; ) = F(z) — Hopy1(F; ), where
Hopnt1(F; x) is interpolation polynomial (3.13), coincides with the equality (3.10).

4. Formulas containing differentials and Stieltjes integrals of
interpolated operator
We construct, further, interpolation operator formulas of other structure, containing

differentials and Stieltjes integrals of interpolated operator.
Let’s introduce the scalar function

b T2t
X(T’t)_{a, T <t,

where a < 7 < b, x(a, t) =a and x(b, t) =b.
By Q2n+;j(z) we define operator polynomial of the form

2n+j b
Qontj(x) = Z /a;g(s7 )z (t)dt, (4.1)
k=0
where a (s, t) are some given functions (s € R*, « € N; t € [a, b]; k=0, 1, ..., 2n + j;

Jj€N).
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Theorem 4.1 For the operator polynomial

H2n+j(F; ac) = F(.T()) + Z 5”+jF[xk; Tnkj (LU)]—F (42)
k=0

+Z/lnk )d-Flzo(-) + g(X(7, -), s 2% — x0)],

where Ly (z) = L (x(t)) and Tnkj(x) = Tnkj(x(t)) are the same as in theorem 3.1, and
for operator g(7, t;x) the relations (3.3) take place, interpolation conditions (3.6) and
(3.7) are satisfied. In the case j > 1 interpolation formula (4.2) is invariant with respect
to operator polynomials F(x) = Q,(x) of the form (4.1) of degree less or equal n. If
j =1 and F(z) = Qan+1(x) is operator polynomial of degree not above 2n + 1, then
Happ1 (F ) = Q2nt1(2).

Proof. At x = x, the equalities Tnkj(x,,) =0, lux(z,) = Ok, take place for integer j > 1
and k, v =0, 1, ..., n. Hence

b
Hap i j(F; @) = F(x0) + /dTF[fCo(') +9(x(7, ), 52 — x0)] = F(x,),
where v =0, 1, ..., n.

Using, as well as earlier, the identities 6"/ 1,,x[z; h1, ha, ..., hn+;] = 0 and equalities
5n+j7nkj[$i; hl, hg, ceny thrj] = 5k1h1(t)h2(t) hn+J(t) for k7 1= 0, ]., ...y N WE come
to the relations (3.7).

Let operator F'(z) has the form

b

F(z) = /aq(s, t)zd(t)dt, (4.3)

a

where degree ¢ = 0, 1, ..., n, then first sum in (4.2) will turn into zero, because the order
of the differential is equal to n 4+ 5 > gq.

For k-th item of second sum in (4.2) and this type of operators, taking into account
properties of the function x(r, t), we get the equality

b
/ Lo (M)]dy Flzo(-) + g(x(r, ), 32 — 70)] = / L le(7)] %

T

b b
xd, /aq(s, t)xZ(t)dt+/aq(s, txd(t)dt p = /aq(s, )i z(7)] {2 (1) — 2d(7)} dr.

a
From here
b

Honyj(F; 2) = /aq(s t) l —|—Zlnk )—xg(t)}] dt =

a

b " b
= / aq(s, t)Zlnk[I(t)}zZ(t)dt = /aq(s, t)zd(t)dt = F(x).

k=0
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For further proof of the theorem, as before, it is more conveniently to consider
operators of the form

b

Fla) = /aq(s, e (2(0) 2 (1)t (q =0, 1, oy n4j — 1), (4.4)
since if the formula (4.2) is exact for operators (4.4), then it will be exact and for operators
F(z) of the form (4.3) for g=n+1, n+ 2, ..., 2n + j. The theorem 4.1 is proved. O

For interpolation error Rop4;(F; ©) = F(x) — Hopyj(F; x), where Hopi i (F; ) is a
polynomial of the form (4.2), following representation takes place:

n+1 b
Ronyj(F; x) = Z/Qn+1k[ﬂf(Tﬂd7F[$o(') +g(x(7, -), 2k — 20)]+ (4.5)
k=1

n+1
+ Z " E [Tk; Gn+1kj(33)] .
k=0
Here z,41 = . Indeed, at nodes z, for v = 0, 1, ..., n we have Ro,;(F; z,) = 0. If

v =n+ 1, then we obtain

L b
Ronyj(F; Tptr) = — Z/lnk[ﬂﬁnJrl(T)]drF[a?o(') +9(x(7, ), 2k — w0) |+
k=1

b n

+/d.,-F[x0() +g(X(’rv ')7 T4l — xO)] - Z§n+jF |::Ek§,lvnkj(xn+l)} =
k=0
= F(xn—i-l) - H2n+j(F; 33"4,_1).

Thus, the formula (4.5) really defines interpolation error of operator F'(x) by polynomi-
al Hopyj(F; ) of the form (4.2).

Now we obtain Newton’s variant of Lagrange formula (4.2). From the equality (4.2),
taking into account the relation (3.12), we have

a

kb k
AHk(x) = Z/Qku[x(T)]d‘rF[xO() + g(X(Tv ')a Ly — xO)] + ZénJer [xu; Gku](‘r)] :

v=0

After substitution of this expression into the formula (3.11) we obtain Newton type
formula.

Corollary 4.2 The operator
Hopyj(F; @) = F(w0)+ (4.6)

k=1v=1 k=1v=0

where j is some fixed natural number, is Newton interpolation polynomial for operator
F(z), satisfying the conditions (3.6) and (3.7). In the case j > 1 formula (4.6) is invariant
with respect to operator polynomials F(x) = Qn(z) of the form (4.1) of degree less or
equaln. If j = 1 and F(x) = Qa,+1(x) is operator polynomial of degree not above 2n+1,
then H2n+1(F; 17) = Q27,+1($).
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Interpolation error R,y j(F; ) = F(x) — Hapyj(F; x), where Hoy,yj(F; ) is
interpolation polynomial (4.6), coincides with the representation (4.5).

Let, further, X and Y be any normed spaces. We assume, that for differentials
"Fle; h) (v = 1,2, .., n+ j; z, h € X) the following inequalities are fulfilled:
| 0“Fla; h] |[< My, || b || (0 < M, < o0). Let M = max{M;, M,;;}, where j is
some fixed natural number, then for error (3.10) the estimate

n+1 n+1
| Ronj(F; ) [[< M {Z 1Qn 1 (@)g (7,5 21 — o)l + Y ||Gn+1kj(ﬂf)|l}
k=0

k=1

takes place. If function Flxo(-) + g(x(7, ), ;)] is of bounded variation on X, then for
the interpolation error (4.5) we come to similar estimate

n+1 n+1

| Ran; (F; x) [|[< L {Z 1Qnr (@) + > ||Gn+1kj(9«“)} ; 0< L <oo.
k=0

k=1

One of extremal problems arising here consists in determination of interpolation nodes
x2i(t) (k =0, 1, ..., n) for which the sums of norms in estimates of errors have minimal
value.

5. Some interpolation formulas for functions of matrix variables
The interpolation problem of matrix functions was studied earlier [4] — [6], [8], too.

The construction questions of interpolation matrix polynomials of various structure were

considered both for stationary, and for functional square and rectangular matrices.

The form and basic properties of interpolation matrix Hermite—Birkhoff polynomials,
constructed further for functions, given on the set of stationary matrices, are similar to
the interpolation polynomials, constructed earlier for the case of scalar functions.

Let X be a set of stationary square matrices of some fixed size, on which an opera-
tor F': X — X, differentiable on X in the Gateaux sense, is defined, and interpolation

nodes Ag, A1, ..., A, be scalar matrices from X, such that Ax = ail, where oy is some
pairwise different numbers (k = 0, 1, ..., n), and element I € X is identity matrix.
Let also values F(Ag), F(A1), ..., F(A,) of operator F(A) and values of its Gateaux di-
fferentials 6" F[Ag; hi, ha, ..., hnyj] of some fixed order n + j, in directions h, € X

(v =1,2,...,n+7; 7 € N) are known. It is required to construct a matrix algebraic
polynomial Hop;(F, A) = Honyj(A) of degree not above 2n + j with numerical coeffici-
ents, satisfying the conditions

Hopyj(F Ay) = F(Ay), (5.1)
5n+jH2n+j[Ak; h,l, hg, ceey hn—i—j] = 5n+]F[Ak, hl, hQ, ceey hn—i—j]v (52)
where £k =0, 1, ..., n, and j is given natural number.
Let’s define, as well as earlier, the algebraic polynomial y,x;(¢) of degree 2n + j with
1

respect to scalar variable ¢ by equality ynk;(t) = (t — s)" Tk (s)ds,

o—_

where k=0, 1, ..., n;j €N.
Now we introduce the notations

- A—O[()I A—ak,1[ A—OszrlI A—anI
Qg — 0y Qg —Op—1  Qp — Qg1 O — Q|

lni(A4)
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n

lnkj (A) = ynkj (A) - Z lnu(A)ynkj (Al/)7 (54)
v=0
where k=0, 1, ..., n; j €N.
Let’s assume that the independent variable A and directions h1, ha, ..., h,4j, entering

the interpolation conditions (5.2), are mutually permutable.
Note that in the case j = 1 the required Hermite—Birkhoff polynomial of degree not
above 2n + 1 is constructed in [4] in the form

Hanr1(A) = 3" {Lu(A)F(Ar) + 6" FAg; Tura (A)]).
k=0

It is proved that the corresponding interpolation formula is exact for matrix algebraic
polynomials of degree less or equal 2n + 1 with numerical coefficients.

Theorem 5.1 For the matrix polynomial

n

Hanj(F: A) = Y [l A)F(A0) + 0" F[Aw; Ty (A)]] (5.5)
k=0

where j is some fixed natural number, the conditions (5.1) and (5.2) are satisfied. In
the case j > 1 interpolation formula (5.5) is invariant with respect to matrix algebraic
polynomials of degree less or equal n, and for j = 1 it is exact for a matrix polynomials
of degree not above 2n + 1 with numerical coefficients.

Proof. The equalities (5.1) follows from the relations lnx(A,) = Opy, lnk;(Ay) = 0 for
k,v=0,1, ..., n;5€N.

Taking into account, further, that l,,x(A) is a matrix polynomial of degree n, we
obtain lfﬁcﬂ)(A) =0for k=0, 1, ..., n, and any natural value j. Besides, on account of
requirement indicated above in regard to the permutability of matrices A and directions
hlv hQ, ceey hn+]‘, we have (SnJrjlnkj[Ay; hl, hg, ceey hn+j] = 5kuh1h2"'hn+j for k, Vv =
0, 1, ..., n; 7 € N. It proves that for the formula (5.5) relations (5.2) will be fulfilled.

Let @, (A) be a matrix polynomial of degree not above n with numerical coefficients. If
F(A) = Qn(A), then the formula (5.5) coincides with interpolation polynomial Lagrange
and, hence, Ho, 4 (F; A) = Qn(A). Invariance of the formula (5.5) for matrix polynomials
of degree not above 2n + 1 in the case j = 1, as it was already noted, established in [4].
The theorem 5.1 is proved. o

b
Example 1. Let F(x) = /K[s, t,x(t)]dt is Uryson operator, and interpolation nodes

a
b

zi(t) € Cla,b], k = 0, 1, ..., n. Then differential 6" F[z; h] = /Ka(c”)[s,t,x(t)]h(t)dt,

v =1, 2, .., n+ m, and Hermite-Birkhoff interpolation polynomial (3.5), where the
operator g(7,t;x) = 7a(t), and 7, t € [0; 1], takes the form

n

b
Hopyi(F; x) = Z/{K[s,t,xk(t)]lnk(x(t)) +KJ(C"”)[S,t,xk(t)]fnkj(x(t))}dt.

k=0

It is easy to notice that obtained polynomial satisfies the interpolation conditions (3.6)
and (3.7), where j € N.
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In summary we will note that a series of interpolation similar type formulas is obtai-
ned in [3] — [4], and the theory of operator interpolation is fully enough investigated in
monography [5], in which, in particular, special cases of Hermite-Birkhoff interpolation
problem are also considered.

This research was financially supported by Belarusian Republican Foundation for
Fundamental Research (the project Ne ®09K - 005).
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