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NUMERICAL METHOD FOR COMPUTER MODELING
OF DIFFUSION OF IMPLANTED DOPANT ATOMS
IN SILICON IN MODERN VLSI TECHNOLOGY

An extended five-stream model for diffusion in silicon is presented. A finite-difference method for computer
madeling of dopant diffusion during post-implantation annealing is developed. Conservative implicit finite-
difference schemes are obtained using integration-interpolation method. The nonlinear algebraic equation de-
scribing the local electroneutrality condition is solved using the lisection method. The obtained nonlinear sys-
tem of difference equations js solved by iferative method.

introduction

The mainstream in modern VLSI technology is further miniaturization. Of particutar importance is decreasing the
depth of p-r junctions in transistors down to nanometric size, which permits improving their working parameters and
minimizing the so-called short-channet offect (leakage from drain to source when the transistor is off). The ulirashal-
low p-n junctions (US)) in modern VLSI technology are produced by high-dose ion implantation of door (4s, P, §b) or
acceptor (¢.g., B) dopants into a silicon waver. The energy of tons is ~1-10 keV; this is the so-called low-encrgy im-
plantation as opposed to the high-energy technology (~1-0.1 MeV) used in the previous generation of VLSI chips.
After implantation, rapid thermal annealing (RTA) is used to heal the defects gencrated by implantation and perform
the so-called electrical activation of the dopant atoms. However, during RTA, as well as during other kinds of post-
implantation thermal treatment {e.g., spike annealing), the phenomenon of transient enhanced diffusion (TED) is ob-
served: the apparent diffusion coefficient of the impurity atoms increascs by several orders of magnitude, and near the
outer surface uphill diffusion takes place [1-3]. This complex phenomenon is currenily a subject of extensive expeti-
mental investigation because it hampers obtaining an optimal concentration profile of the dopants and hence hinders
ataining the required current-voltage characteristics of transistors in VLSI cireuits [1, 2].

TED is typically ascribed to the interaction of diffusing specics with non-equilibrium point defects (vacancies ¥
and silicon sclf-interstitials f), which are accumulated in silicon due to ion damage. Solving the intricate probiem of
TED suppression is imposstble without mathematical modeting of this compiex phenomenon. However, modem tech-
nology computer-aided design (TCAD) software packages such as SUPREM-1V by Silvaco Data Systems encounter
severe difficulties in predicting TED of implanted dopants. Thercfore, development of novel models to provide a cor-
rect physical description of TED is an urgent problem in the VLSI technology. Most of the models used in this area,
mcluding those implemented in popular package SUPREM-IV, employ the so-called five-stream approach [4-6],
which was tirst put forward in Ref. [7]. In crystaliine silicon, diffusion of dopant atorns can procecds via pairs “dopant
atom-vacancy” A¥ and “dopant atom-silicon self-interstitial” A7, which can have several charge states (41)", (41,
a=0,11 [8]. Also, the diffusion of free point defects X=V,J, which exist in multiple charge states XY, v=0,+1,12, takes
place [4-7] and is accompanicd by interaction between dissimilar diffusing specics (gencration and recombination of
pairs). Recently, an extended five-stream model has been developed, which takes into account alt the possible charge
states of the diffusing species and the kinetics of interaction between them [9, 10].

in connection with the above, the goal of this work is the development an ¢fficient nurnerical method to solve a
set of nonlincar partiat differential equations, which describe the reaction-diffusion processes in silicon during
RTA, for calculating the concentration profile of dopant atoms tn the transistor and predicting the current-voltage
characteristics of the latter.

Formulation of the mathematical
model

In this work, we consider one-dimensional diffusion of an acceptor impurity, viz. boron (B }; hence the free
charge carries in boron-doped silicon are positively charged holes. The mode! consists of four partial differential
reaction-diffusion equations for diffusing pairs A¥ and 47 (4=8 ) and point defects 7 and ¥, which account for the
effect of built-in clectric field on the diffusion of differently charged species and include the sink/source terms de-
scribing the interaction of dissimilar species (in particular, the formation and recombination of pairs A7 and 4V and
annihilation of non-equilibrium point defects):
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Besides, there are two additional equations: a differential equation for the evolution of the charged, 1.e. electn-
cally active dopant atoms (here boron) in the lattice sites
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and the nonlinear algebraic equation describing the condition of local electreneutrality {because the mobility of
hotes is much higher than that of charged ditfusing species):
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Here C,,Y = LV, 4L AV, are the volumetric concentrations of diffusing species {point defects and pairs), which

are defined as a sum over all the possible charge states: C, =ECF, , where a=0,x1 for pairs AF and AV,

w=0,1.%2 for point defects; C, is the concentrahion of dopant atoms (8 ) in the lattice sites; p is the concentration
of holes; Dy is the diffusion coefficient of corresponding species. Dy and Dy being constant at a given temperature;
Dy, is the etectrodiffusion coefficient describing the effect of a built-in electric field, which arises due to non-
uniform distribution of free charge carries (here holes) in the doped silicon crystal, on the diffusion of charged spe-
cies; Ry_y Y.Z=IV,A, Al AV, Y£Z, are the reaction-rate terms describing the interaction between dissimilar species;
o and y are the charges of pairs and point defects, correspondingly; B is the charge of dopant atoms in the lattice
sites, § = -1 for acceptors (because here A=8 ): #, is the intrinsic concentration of free charge carries (here elec-
trons), which is known in literature and depends only on temperature.

The free outer surface (at x=0) of crystalline silicon is a natural sink for point defects, Thus, equilibrium concen-
tration of the latter is always sustained there, while tor diffusion of pairs the mirror-like. or Neumann boundary
conditions should be imposed at x=0. Similar conditions hold true at x-»o0. Then the boundary conditions in the
domain x=[0.7], where /is the maximal diffusion depth, are formulated as foliows:

Cf|r=0 = C"'I-;'—-I = C‘:’ (?)

cl.=¢|_=¢, (8)
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where C; and C, are the equilibrium concentrations of point defects at a given temperature, J/ is the diffusion
flux.
The initiat conditions {concentration profiles of point defects, lattice atoms 4 and pairs AL, 4¥ at =0} to reac-

tion-diffusion equations (1}<35) depend on the implantation conditions and are determined by Monte Carto simula-
tion {1, 12}

Finite- difference approximation

For performing numerical solution of the formulated problem, the finite difference method is used. In domain
€, a discrete grid @<, is introduced so that

@, = (x=ih, B0, i=0,1,.. N, Ni=I}, @, = {t=jt, 120, /=0,1,...,.M, M1=T", (11)
where £ is & step over axis Ox and T is a temporal step.

For any function defined on the grid, y(x.7), the finite-difference derivatives are determined as follows:
yo=(h, = ¥k, 200, N-1, j=0.1,..., M (a forward derivative), ye=(y' — y. )} h. i=1,2...N,
0.1..... M (a backward derivative), and v, = (3¢ — /7)1, i=0,1...., N-1,7=12,..., M (a time derivative). The
discrete (i.e. approximate) values of variables C, Ci, Cyr, Ciy. Cy, p on the finite grid are denoted as vy, ya...., Vs,
correspondingly.

To construct conservative finite-difference schemes for partial differential equations (1)-(4), we employ the
universal integration-interpolation methed [13]: the equations are integrated over the cell [x, 1, xnn]X[4-1 1]
i=l,..., N-}, /=12,..., M. After that the integrals are approximated by linear combinations of variables v, & =1,6

and relevant coefficients in the cofresponding iattice nodes. The resulting systems of nen-linear finite-difference
equations look as
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Here parameters 21, ¢z, ..., dq are determined as follows:
a1, y8) = 0SED (0 6. + Diglyn s 1, ¥4 0,
¥z, v6) = 0.5[Dypb2 Vo) + Duglya 1. Yo D,
@y, ¥o) = 05104010 ¥oud + Dadyrs 15 Vou 1M {(18)
@71, ¥3. Ve) = 5[0 1pp(Vi s ¥3. Vo) ¥ D3 1233, 14 You 1)
as(vy, yo) = 05Dy Yed + Dz vn Voo 1)L
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whete subscript 7 denotes the number of node along the Ox axis.
The boundary conditions {7), (8) look as

=y, = nle=rl, =, (19)
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while boundary conditions (9), {10) are approximated using the Taylor series expansion:
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where 3 = 1 for =0, § = -1 for i=N.
Since the discrete equations ([2)(17), {20) and {21} are nonlinear, the numerical solusion of the problem under
consideration can be found using an iteration procedure which is described below.

lteration procedure

The system of finite-difference equations ¢12) - (16) together with boundary conditions (19) {21) and discrete
algebraic equation (!7) is linearized in the following manner:
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where 5 and s+1 are the iteration numbers; Eqgs. (22)426) refer o nodes =1,2,..., N-1, j=1,2,... M and Eq.(27)
refers to all the nodes: =0,1,.. N, /=1,2,.. .M, in Eqs.(29), (30) 3 = 1 for /=0, 8 = -] for i=N. Here the following
notation is used:

¥ * B L e ( Ll
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where subscript & is the number of a variable and superscripts f, /—1 denote the number of a temporal layer.
For the zero iteration, the values on a previous temporal layer are taken:

1=l

yo, = VL K=16,i=0,1,.. N, 3hH

The system of fully implicit finite-difference equations (22)(23) with boundary conditions (28)—(30) is solved

s —
for y,, K =1,5, using the economical Thompson method; Eq. (26} is an algebraic one and is solved directly for the
FL] W+
unkrown values of v, : nonlinear algebraic equation (27) is solved numerically for y, by the bisection method
which provides unconditional convergence. The iterations are continued uatil convergence of the numerical solu-
tion is attained, i.e. the following condition Is satisfied:

++l > i+

Ivl, = vl | <&y, |+ &, K=1,6,i=012..N, (32)

where £l and &2 are the prescribed telerances (empirical parameters).

Conclusion

Thus, a finite-difference method and algorithmn is develeped for solving a system of nonlinear partial-differential
equations that describe the diffusion of boron atoms in monocrystalline silicon during post-implantation annealing.
Basing on the algorithm, a computer coede is elaborated which can be used for modeling of diffusion of implanted
dopants in silicon during the production of ultrashallow p-r junctions in VLS circuits. Computer modeling using
this code will permit decreasing the undesirable TED phenomenon, predicting the dopant distribution in a transistor
and current-voltage characteristic of the latter, and optimizing the parameters of implantation and subsequent they-
mal annealing in modern VLSI technology.
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SECURE SHELL SESSION RESUMPTION

The Secure Shell (SSH) Protocol is a protocol for secure remote login and other secure network services aver
an ipsecure network, However, using modern crvptography techniques might be computationally expensive, es-
pecially for low-end devices such as wireless access points and DSL rowters. Here I present an implementation
of u session resumption mechanism that has been proposed eavlier 1o rmprove the performance of SS11.

Introduction

Secure Shetl is a netwerk protocol that allows data to be exchanged using a secure channel between two
networked devices. The encryption used by SSH provides confidentiality and integrity of data over an insecure
network, such as the [nternet. Symmetric-key encryption algorithms are used by SSH, so both a decryption and an
encryption are accomplished by identical cryptographic keys. Therefor before starting an encrypted session SSH
uses some mecharisms that allows two parties that have no prier knowledge of each other to establish a shared
secret key over an insecure communications channel. But the modem cryptography techrigues that are used to
accomplish this are very computationally expensive. A key exchange procedure 1akes place only once during the
inittaf phase of the SSH connection.Nevertheless the performance can be significantly affected when new
connections are repeatedly established over a short period of time, especially in case of devices with limited
Fesources.

A session resumption mechanism allows to use the session key from the previcus connection. instead of
establishing 2 new one, thus it avoids a costly key computation procedure.

Secure Sheel protocol

Secure Shell (SSH) protocol consists of three major components: Transpert Layer Protocol. User Authentication
Protocol and Connection Protocol.

Transport Layer Protocol deftned in the RFC4233 (2] provides server authentication, confidentiality, and integ-
rity. 1t may optionally also provide compression. Typically the transport layer is run over a TCP/IP connection.

The User Authentication Protocol defined in the RFC4252 (3] authenticates the client-side user to the server and
it runs over the transpart layer protocol.



