

Puc. 2. Величина ошибки при различных значениях параметра k

Отметим, что эффективность применения описанного алгоритма напрямую зависит от того, по какому принципу данные были изначально разделены на классы относительно значений их характеристик. В частности, описанный алгоритм может уступать метрическому, если при разделении на классы неявно использовался метрический алгоритм кластеризации. При этом алгоритм имеет только один настраиваемый параметр k, который настраивается методом скользящего контроля.

Литература

- 1. *Stuart Russell, Peter Norvig.* Artificial Intelligence: A Modern Approach. -3rd ed. Pearson education, 2010.
- 2. *Ian H. Witten*. Data Mining: Practical Machine Learning Tools and Techniques. -3rd ed. Elsevier, 2010.
- 3. Гренандер У. Лекции по теории образов: Регулярные структуры. Пер. с англ. М.: Мир, 1983.

ИССЛЕДОВАНИЕ АЛГОРИТМОВ ХЕДЖИРОВАНИЯ РИСКА НА ОСНОВЕ ПРОЦЕНТНЫХ СВОП-КОНТРАКТОВ

А. С. Стречко

ВВЕДЕНИЕ

Одним из основных производных финансовых инструментов хеджирования финансовых рисков является своп-контракт (своп). Различают такие виды свопов, как процентный своп, валютный своп, кредитный дефолтный своп.

Процентные свопы используются для решения следующих задач:

1. Хеджирование процентного риска: эмитенту облигаций, необходимо хеджировать процентный риск, преобразовав обязательство с фик-

сированной процентной ставкой в обязательство с плавающей процентной ставкой. Для того чтобы осуществить хеджирование, необходимо определить номинал своп контракта [2].

2. Оценка возможных потерь банка при дефолте одного из участников свопа, когда он выступает посредником свопа [3].

Валютные свопы применяются для хеджирования долгосрочного валютного риска. В связи с этим возникает задача оценки пунктов валютного свопа. Кредитный дефолтный своп позволяет отделить кредитный риск от остальных рисков, а также управлять им. При заключении кредитного дефолтного своп-контракта встает задача определения величины ежегодных выплат покупателя свопа.

В связи с заимствованиями на внешних рынках посредством выпуска государственных и корпоративных еврооблигаций задачи хеджирования рисков становятся актуальными для белорусских эмитентов. Целью данной статьи является исследование на реальных данных используемых для этих целей алгоритмов хеджирования с помощью своп-контрактов.

ХЕДЖИРОВАНИЕ НА ОСНОВЕ ПРОЦЕНТНЫХ СВОПОВ

Текущая стоимость выплат по фиксированной ставке свопа определяется по формуле:

$$PV fixed = C^* \sum_{i=1}^{M} (P^* \frac{t_i}{T_i} * df_i), \tag{1}$$

где C — ставка свопа, M — количество периодов фиксированных процентных платежей, P — номинальная сумма сделки, t_i — количество дней в процентном периоде i, T_i — финансовая база валюты в соответствии с конвенцией, df_i — фактор дисконтирования.

Текущая стоимость выплат по плавающей ставке свопа рассчитывается следующим образом:

$$PV_{float} = \sum_{i=1}^{N} (P * \frac{t_i}{T_i} * f_i * df_i),$$
 (2)

где N — количество периодов плавающих процентных платежей, P — номинальная сумма сделки, f_i — форвардная процентная ставка, t_i — количество дней в процентном периоде i , T_i — финансовая база валюты в соответствии с конвенцией, df_i — фактор дисконтирования.

Фактор дисконтирования рассчитывается следующим образом:

$$df_{i} = \frac{df_{j-1}}{1 + c_{j-1} * t_{j} / T_{j}}.$$
 (3)

В момент заключения сделки, ни одна из сторон договора не имеет преимуществ по выплатам, то есть $PV_{float} = PV_{fixed}$ [2], откуда следует:

$$C = \frac{PV \text{ float}}{\sum\limits_{i=1}^{M} (P * \frac{t_i}{T_i} * df_i)}$$
(4)

Для того чтобы захеджировать риск по облигации необходимо выполнение следующего соотношения:

$$SN = -\frac{BN * MD}{SD} \,. \tag{5}$$

SN — номинал свопа, SD — дюрация свопа, BN — номинал облигации, MD — модифицированная дюрация облигации [1].

ОЦЕНКА ВОЗМОЖНЫХ ПОТЕРЬ ПОСРЕДНИКА СВОПА

Для того чтобы оценить возможные потери банка-посредника процентного свопа, необходимо оценить форвардные процентные ставки с помощью моделирования процесса случайного блуждания, использующего логнормальное распределение с необходимыми в будущем характеристиками изменения процентных ставок [3]. Таким образом, форвардные процентные ставки будут изменяться согласно следующему соотношению:

$$r_t = c + r_{t-1} * e^{x}, (6)$$

где r_t – процентная ставка в момент времени t, r_t – 1 – процентная ставка в момент времени t-1, x – вектор нормального распределения с нулевым математическим ожиданием и дисперсией, равной волатильности, рассчитанной по историческим данным изменения процентных ставок.

Предположим теперь что в некоторый момент в будущем процентная ставка примет значение r_t . Тогда поток платежей при процентной ставке r_t в будущем составит:

$$P = (r_t - r_0) * N/T, (7)$$

где r_0 — процентная ставка в момент заключения свопа, N — номинал свопа, T — количество выплат по свопу в год.

Если дисконтировать все будущие платежи на момент времени t по следующей формуле:

$$PV_{t} = \sum_{i=t}^{T} \frac{P}{(1+r_{t})^{i}},$$
 (8)

где P — поток платежей, r_t — процентная ставка для данного потока платежей, то можно получить потери, которые может понести посредник при дефолте одного из участников контракта.

ИССЛЕДОВАНИЕ АЛГОРИТМА ХЕДЖИРОВАНИЯ

свопа, необходимого для хеджирования данной облигации.

Применим описанный алгоритм для хеджирования кредитного риска эмитента государственных еврооблигаций Республике Беларусь [http://www.minfin.gov.by/news/information/]. На основе котировок фьючерса по Евродоллару (март 2013—декабрь 2023) [http://www.cmegroup.com/trading/interest-rates/stir/eurodollar.html] рассчитана номинальная фиксированная ставка процентного свопа с продолжительностью в 1, 3, 5, 7 лет. Также определен номинал процентного

Таблица Результаты вычислений по процентному свопу

Кол-во	Котировка	Дюрация	Номинал	Номинал	Дюрация
лет	Свопа	Свопа	свопа,	облигации,	облигации
			USD	USD	
1	0.0031	-0.7446	5412.30	800	5.0377
3	0.0032	-2.6965	1494.60	800	5.0377
5	0.0036	-4.3863	879.1177	800	5.0377
7	0.0063	-6.2204	647.8970	800	5.0377

Исходя их полученных результатов, можно сделать вывод о том, что с уменьшением продолжительности свопа его номинал растет. При одинаковой продолжительности номинал свопа меньше номинала хеджируемого актива. Таким образом, чтобы захеджировать риск по еврооблигации, необходимо заключить контракт своп продолжительностью 7 лет с номиналом 647.8970 USD.

На основе котировок свопов продолжительностью 1, 2, 3, 5, 7, 10 лет на дату 26 апреля 2013 года были получены будущие процентные ставки по свопу с помощью метода Монте-Карло. Были рассчитаны возможные будущие потоки платежей для каждого периода и дисконтированы на начальный момент изменения процентной ставки. На основе них были вычислены возможные потери посредника свопа, выраженные в процентах от номинала свопа.

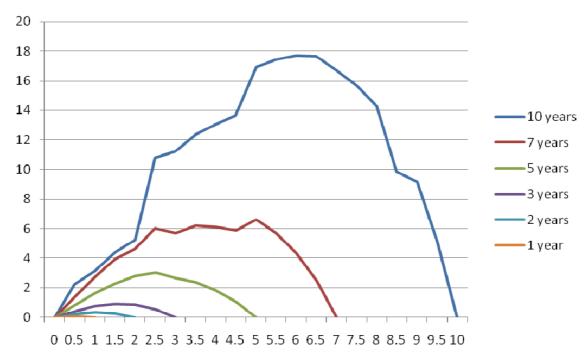


Рис. 1. Потери, которые может понести посредник свопа при дефолте одного из участников свопа, выраженные в процентах от номинальной стоимости свопа

Анализ графиков убытков показал, что возможные потери в начале и в конце действия своп-контракта равны нулю. Далее, так как фиксированная ставка может измениться от первоначальной ставки, возможные потери постепенно увеличиваются. При приближении даты завершения свопа возможные убытки уменьшаются, так как остается меньше периодов, в которые разность между начальным и текущим процентными ставками может накапливаться в виде возможных потерь. Кроме того, чем дольше срок операций своп, тем выше кредитный риск, потому что существует больше времени для изменения процентных ставок.

Литература

- 1. *Малюгин В. В.* Рынок ценных бумаг. Количественные методы анализа. Минск: БГУ. 2001.
- 2. Hull J. Options, futures, and other derivatives (5ed., PH, 2003).
- 3. *Simons K.* Measuring Credit Risk in Interest Rate Swaps. New England Economic Review, P. 29–38.