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Abstract

Forecasting of stationary time series based on the Bloomfield model is con-
sidered. The mean-square risk of forecasting is analyzed for the situation with
known parameters of the model.

1 Introduction

The accuracy of statistical inferences (estimates, decisions, forecasts) in parametric
data analysis, as it is known [1,2], depends on the ratio of the number p of model
parameters and the observation length T p(p,T) = p/T. If p << T, ie. p(p,T) — 0 at
T — o0, then statistical inferences based on classical methods (least squares, maximum
likelihood, Bayesian method} appear consistent and give an acceptable accuracy for
practice. On the other hand, if the number of model parameters p is comparable
with T, ie. p(p,T) — ¢, 0 < ¢ < 1, then classical methods appear inapplicable, and
acceptable accuracy is reached only for some special cases. As a result, the problem
of development and statistical analysis of small-parametric models, i.e. models with
small p(p,T), is very topical. In [3] Bloomfield proposed the so-called exponential
model EXP(p) of order p for stationary time series and built some estimators of its
parameters. This paper is devoted to using this model for statistical forecasting.

2 Bloomfield model and its properties

Introduce the notation: Il = [—m,7]; e,(A) = e™ A € ll,n € Z; En{f} = (2r)"! x
x o SN, Du{f} = Ba{lf1?) — [Ea{/}P, f : = C.

Let {z(},t € Z, be a real valued stationary time series with zero mean E{z;} =0,
a covariance function ¢, = E{z:%.,,}, the correspondent correlation function 8, =
05/09, T € Z, and the spectral density function S(A) = > .z ore-(A), L(A) = InS(A),
A € I1. For brevity we call S(X) and L{A) the spectrum and the log-spectrum respec-
tively.

Under the assumption L{-) € L,(II), any time series z, is uniquely representable by
the following models of infinite order: the Bloomfield exponential model EXP{co) [3]:

S() = exp {lo + 2Re{l(eMN)}}, U(z) =D _la2” Iphr,--- €R, (1)
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4 Risk of forecasting and its asymptotic analysis

Theorem 1. Let the forecasted time series x; have the spectrum S(\), the coefficients
{an} of the forecasting statistic {3) generate the spectrum Sy (X) = ?/|a(e™)|* with the
transfer function a(-) specified by the seres: a(z) =1-3"""  a,2™, and o = o,. Then
the risk r(5,|S) = E{(2, — z,)%} of the forecasting statistrc (3) satisfies the relation:

In{r(5.]9)} — &(S} = m{En{S/S5.}} — En{ln{S/S.}} > 0. (6)

Theorem 1 characterizes an increment of the risk of forecasting caused by an error
of the approximation of the spectrum S(A) by the function S.{}). Note, that by the
Jensen inequality the right side of (6) is always nonnegative, invariant to the scaling
of each of the functions S(X), S.(A} by some positive factor and vanishes at S,(}) =
¢-S{)), ¢ > 0. Also note, that the minimal risk of forecasting 7(5|S) = exp(ls(S)) = o*
is reached at S,(-} = S(-), that fits [1].

Corollary 1. Let S(A) = S.(A) + 6(A), where §()\} 15 an apprommation error. If
m = sup{|0(A)/S(A){} — 0, then the followmng asymptotic expressions hold:
A€l

r(S,|S) = glo(S) | 08Dn{8/5} 4 O(m3) > e‘!"(s),
Ar = 1{5.]8) — r(5|S) = €5 . 05D {6/S} + O(m®),
& = Ar/r(S)S) =05D{S./S} + O(m®)

This result characterizes the risk deviation from the minimal one, when the devia-
tion of the model S,(}) from the true model S(A) is small.

Due to the scheme (5), for the EXP(p)-forecast of the depth T € N we have S, =
ar(ep(S)). Denote the risk of this forecast: rr, = r{ar(e,(S)}|S), and investigate its
asymptotics.

Theorem 2. Forp € N and mncreasing depth T — +oo the risk of the EXP(p)-forecast
r7p salisfies the asymptotics:

rrp — exp{lo(S)} - En {exp {2 > hecos (k)\)} } . (7)

k=p+1

Note, that the rate of decrease of the right side of (7) at p — oo is directly related
to the rate of decrease of coeflicients I, at n — co. The following result formulate the
conditions, when the sequence of the EXP(oo)-coeflicients [,, decreases faster, than the
sequence of the AR{oo)-coeflicients b,,.

Theorem 3. Let I.(A) = l(e®),A € II, be tusce differentiable and Re{l.(\}} have
M < 4+oo mansmums [ at pownts Ay,..., Ay, while the second derwatwes I () =
Rye* By > 0,)oi| < w/2,k = 1, .., M. Then the coefficients of the Wold au-
toregression by(7y) for the spectrum (S(A))* have the following form at v — +co

270



