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Abstract

In the present work method for construction of approximation of unknown
multidimensional dependency based on data sample is proposed. Approxima-
tion is constructed in the class of linear expansions in parametric functions from
the dictionary. Parameters of the functions from the dictionary are estimated
using gradient methods and expansion coefficients are calculated using adap-
tively regularized method of least squares. Regularization 1s used to increase the
stability of iterative estimation of parameters. For additional improvement of
stability /generalization ability of approximation specially developed method for
boosting is used.

1 Introduction

The problem of determining the analytical description for a set of data arises in numer-
ous sciences and applications. Examples of methods for construction of such analytical
description (comstruction of approximating function, i.e. approximator) on basis of
available data in the form of inputs and outputs are Artificial Neural Networks, Krig-
ing etc [8].

However typical methods for construction of approximations have numerous short-
comings. For example, kriging methods are local by their nature and computationally
intensive in case of high dimensional input or big size of learning sample ete.

The aim of the present work is to describe the general methodology for high di-
mensional function approximation (HDA) based on an expansion in the parametric
functions from the dictionary.

2 Problem statement

In general the problem can be formulated as follows. Let f{X) be some unknown
function with input X € X € R™ and output ¥ = f(X) € R* Let Dy =
{(X,.Y, = f(X,)),: =12, .. s Niearn} be learning sample. The problem is to construct
an approximation Y = f(X)} = f(X|Diearn) (approximator) for the initial dependence
Y = f(X) using the set Dy orn. A

If for all X € X (not only for X € Do) an approximate equality f(X) =~ f(X)
takes place then the approximator f(X) is considered to be appropriate. This fact is
approximately checked using independent testing sample.
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Quality of the constructed approximation is estimated by the mean error of approx-
imation ¢ ( f |Dtm) =/ T lly — f(X)

Nrost

3
|2 on the test set Dy u.

3 Model of an approximator

We will model an unknown function globally using basis expansion in functions from
the specified dictionary, i.e.

R P
FX) =3 ey (X)), (1)

=1
where ¢,(X), j = 1,...,p are some parametric functions. We will use three main

classes of parametric functions, namely

1. Sigmoid basis function ¥,(X) = ¢ (112, 8,.7.), where X = (x1,...,2n), o(z) =
%;-ﬁ- In order to model sharp features of the function f{z) different parametriza-
tion can be used, namely ¢¥,(X) = ¢ (l 1 ﬁ,,zm"(“’”l sign (372, ﬁj‘,m,)), where
parameter «a;, is adjusted independently of the parameters 3, = (8,1,..., 8;m)-
The essence is that for big negative values of «, the function v,(X) behaves like

step function.
2. Radial basis functions %,(X) = exp (—[| X ~ d,|3/0?).
3. Linear basis functions ¢,(X) =z,, = 1,2,...,m, X = (21, .., Tm)-

Thus, the index set J = {1,...,p} can be decomposed into tree parts J = J,, U
Jogmod U Jrer, Where Ju, = {1,...,m} corresponds to the linear part (linear basis
functions), Jugmot and Jrpp correspond to sigmoid and radial basis functions corre-
spondingly.

4 Hybrid Learning Algorithm

Usually in order to fit the model of type (1} to the data simple gradient descent methods
are used for adjustment of its coefficients. However, as it is well-known, such methods
have slow convergence. In this section hybrid learning algorithm is described based on
Regression Analysis and gradient optimization method so called Resilient Propaga-
tion [10} method. The use of Regression Analysis allows to considerably decrease the
learning time.

Any iterative estimation algorithm {and proposed hybrid algorithm is not excep-
tion) should be initialized. Parameters of the radial basis functions are initialized in
the first place. For this elastic net is used [8] which consistently selects input vectors
from the train set Dj.,.» which will be used as centers for radial basis functions. For
initialization of parameters of sigmoid functions it is proposed to use well-known ini-
tialization method [7]. The number of sigmoid basis functions, i.e. the cardinality of
the set Jugmoa can be estimated using statistical learning theory, see the description
of algorithm in [4].
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4.1 Iterative estimation algorithm

Let us now describe how Regression Analysis can be used to estimate the parameters
of the mode] (1). Divide randomly the learning data set Dieqry, into train set Dy, and
vaiiga.tion set Dyq. Obtained subsets Dy i and l:)m; are used for parameter estimation
of f{X) and control of generalization ability of f(X) correspondingly.

It is obvious that the minimization of the error ¢ ( f [Dm,:n) can be done explicitly
over the parameters ¢, 7 = 1,...,p using least squares for some fixed values of the
parameters of basis functions ¥;{X), j=m+1,...,p.

Thus hybrid learning algorithm can be described as successive switching between
calculation of optimal values of a;, j = 1,...,p using ridge regression and adaptation
of the parameters of basis functions #,(X), = m + 1,...,p using gradient descent
Resilient Propagation method (see {10]). On each iteration of the algorithm the regular-
ization parameter is increased if the condition number of the corresponding regression
matrix is big. Otherwise the regularization parameter is decreased (see details of algo-
rithm for adaptive regularization in [5]). If for the user-defined number of consecutive
iterations the error on the set D, does not decrease below its current minimal value
the hybrid learning algorithin is stopped.

5 Ensemble of approximators

Proposed hybrid learning algorithm outperforms standard algorithms (see [8], [10]) in
accuracy and time [1, 2, 3, 9, 5]. However the hybrid algorithm has typical shortcomings
of standard learning algorithms, namely the division of Djeurn into Dypgin and D,y is
random etc. In order to smooth over the influence of these random effects we propose to
construct ensemble on basis of specially elaborated algorithm of boosting [8] described
as follows [6]:

1. Let the initial output of the ensemble equal to Fo(X} = 0.
2. For B=1,2,..:
a) Let us define a new sample Djeornp = {y®, X}, where y®* = B-y— (B -
1) : FB»](X) for {yv X} € Dfearn-

b) Train the B-th approximator fg(X) of the ensemble using the sample Dyeapr, 5
and the hybrid learning algorithm.

¢) The output of the ensemble is set to Fp(X) = £1- Fp_1(X) + & - fa(X).
d) The algorithm for ensemble construction is stopped if for the user-defined

number of iterations the error ¢ ( f |D;mm) does not decrease below its cur-
rent minimal value. Otherwise continue.

6 Experimental comparison

Experimental comparison of the proposed approach with conventional methods (Arti-
ficial Neural Networks, Kriging etc.} can be found in [1, 2, 3, 9, 5, 6]. Testing of the
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proposed method showed its superiority compared to methods mentioned above.
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