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Abstract

For a loss queueing systems of servicing conflict flows within a class of cyclic
algorithms with variable durations a mathematical model has been constructed
in form of a Markov chain with incomes. A numerical search for an optimal
control has been carried out.

1 Introduction

Different algorithms are used to control conflict flows, such as cyclic algorithms, time-
sharing algorithms, algorithms with dynamic priorities, algorithms with prolongations,
etc. In some real queueing systems it is important for an algorithm to be predictable in
behavior from customers’ point of view. For example participants of a road traffic ex-
pect traffic-lights operating in cycles and deviations from this scheme can be perceived
as a malfunction of a traffic light and lead to accident situations.

Hence it is interesting to search for cyclic algorithms with variable durations which
minimize certain objective functions. In the present paper we study mean sojourn time
of all customers during a working cycle. A similar problem in the class of dynamic
priorities was considered in [1].

2 Main results

Consider a loss queueing system with m < ∞ conflict flows Π1, Π2, . . . , Πm. During
a time slot ∆, 0 < ∆ < ∞, a customer of a flow Πj arrives with probability λj and
doesn’t arrive with probability 1 − λj, j = 1, 2, . . . , m. Customers of the flow Πj

are places in a bunker Oj with finite capacity Nj < ∞. Servicing device has 2m
states Γ(1), Γ(2), . . . , Γ(2m). In a state Γ(2j−1) only customers of a flow Πj are served,
this is the reason of conflictness of flows; in a state Γ(2j) customers are not served.
During a time slot ∆ in a state Γ(2j−1) a service of a customer from a queue Oj is
completed with probability βj and the customer leaves the system, or with probability
1− βj the service is not completed. Servicing device shifts its states in a cyclic order:
Γ(1) → Γ(2) → · · · → Γ(2m) → Γ(1) → · · · . Servicing device can function in one of
the n regimes. In a regime r, r = 1, 2, . . . , n, duration of a state Γ(s), s = 1, 2, . . . ,
2m, is non-random and equals Ts,r∆. A time interval during which the states of the
server go from Γ(1) to Γ(2m) inclusively, is called a cycle. A regime get selected in the
beginning of a cycle, i.e. at time 0 and at epochs of servicing device state shifts from



Γ(2m) to Γ(1). Assuming that amounts of customers in the queues is described with a
vector (x1, x2, . . . , xm) ∈ {0, 1, . . . , N1}×{0, 1, . . . , N2}× . . .×{0, 1, . . . , Nm} = X, the
regime u(x) = r is chosen, where u(·) is a predefined mapping of an integer nonnegative
lattice X into {1, 2, . . . , n}.

We will observe the system at discrete time instants 0, ∆, 2∆, . . . . Denote by κj,i

the amount of customers in the queue Oj at time i∆, ηj,i the amount of customers of
the flow Πj arrived during a time interval (i∆, (i+i)∆], ξj,i the virtual amount of served
customers from the queue Oj during the time interval (i∆, (i+ 1)∆] under assumption
of presence of customers in the queue, κi = (κ1,i, κ2,i, . . . , κm,i). A recurrent relation
κj,i+1 = min{Nj, max{0, κj,i +ηj,i−ξj,i}} holds, which characterizes formation of queue
from the flow Πj during the time interval (i∆, (i + 1)∆].

Define T (r) = T1,r +T2,r + . . .+T2m,r. Put τi = 0 and τi+1 = τi +T (r) for u(κτi
) = r.

A random variable ηj,i takes value δ ∈ {0, 1} with probability λδ
j(1−λj)

1−δ and doesn’t
depend on other random variables defined up to the moment i∆ inclusively. A random
variable ξj,i takes value δ ∈ {0, 1} with probability βδ

j (1− βj)
1−δ when for an integer θ

inequalities τθ + T1,r + T2,r + . . . + T2j−2 ≤ i < τθ + T1,r + T2,r + . . . + T2j−1 hold and
u(κτθ

) = r, in the rest of the cases ξj,i = 0.

Theorem 1. Given the probability distribution of vector κ0 sequence

{κτi
; i = 0, 1, . . .} (1)

is a Markov chain.

Introduce numbers

p
(j)
k,l =





1− λj + λβj, k = l = 0,

(1− λj)(1− βj) + λjβj, k = l = 1, 2, . . . , Nj − 1,

(1− λj)βj, k − 1 = l = 0, 1, . . . , Nj − 1,

(1− βj)λj, k + 1 = l = 1, 2, . . . , Nj,

1− βj + λjβj, k = l = Nj,

0, k 6= l, k 6= l ± 1,

q
(j)
k,l =





1− λj, k = l = 0, 1, . . . , Nj − 1,

λj, k + 1 = l = 1, 2, . . . , Nj,

1, k = l = Nj,

0, k 6= l, k 6= l − 1.

Denote by P (j), Q(j) the matrices of numbers p
(j)
k,l , q

(j)
k,l . Then matrices P (j)(a), Q(j)(a)

equal ath power of matrices P (j) and Q(j) correspondingly. For w = (w1, w2, . . . , wm) ∈
∈ X, x ∈ X and u(x) = r one has

Pr{κτi+1
= w|κτi

= x} =

=
m∏

j=1

[(
Q(j)(T1,r+T2,r+. . .+T2j−2,r)P

(j)(T2j−1)Q
(j)(T2j,r+T2j+1,r+. . .+T2m,r)

)
xj ,wj

]
,

(2)



where (A)k,l denotes the element in the k-th row and the l-th column of a matrix A. It
follows from the form of transition probabilities (2) that all the states of the Markov
chain (1) belong to a single ergodic set.

Denote by ζj,i the total sojourn time of all customers in the queue Oj during the
time interval (i∆, (i + 1)∆]. The mean sojourn time of all customers in the system per
cycle under condition κτi

= x equals

zi(x) =
m∑

j=1

T (r)−1∑
t=0

E(ζj,τi
|{κτs = x}), r = u(x).

To compute zi(x) put

h
(j)
k,l (∆) =





λjβj∆/4(1− λj + λjβj), k = l = 0,

k∆, k = l = 1, 2, . . . , Nj,

k∆ + ∆/2, k + 1 = l = 1, 2, . . . , Nj,

k∆−∆/2, k − 1 = l = 0, 1, . . . , Nj − 1,

0, k 6= l, k 6= l ± 1,

g
(j)
k,l (∆) =





k∆, k = l = 1, 2, . . . , Nj,

k∆ + ∆/2, k + 1 = l = 1, 2, . . . , Nj,

0, k 6= l, k 6= l − 1, k = l = 0.

Let T (r) = {1, 2, . . . , T (r)}, T (j,r) = {T2j,r + T2j+1,r + . . . + T2m,r + 1, T2j,r + T2j+1,r +
. . . + T2m,r + 2, . . . , T2j−1,r + T2j,r + . . . + T2m,r}. Define recursively

H
(j,r)
l (0) = 0,

H
(j,r)
l (i) =

Nj∑

k=0

q
(j)
l,k (g

(j)
l,k (∆) + H

(j,r)
k (i− 1))

for i ∈ T (r) \ T (j,r),

H
(j,r)
l (i) =

Nj∑

k=0

p
(j)
l,k (h

(j)
l,k (∆) + H

(j,r)
k (i− 1))

for i ∈ T (j,r). One can see that

zi(x) =
m∑

j=1

H(j,r)
xj

(T (r)), u(x) = r. (3)

Relations (2), (3) define a Markov chain with incomes [2]. To determine the best rule
u(·) it is possible to use the Howard’s algorithm.

To carry out experiments a program in high-level programming language Octave [3]
was written implementing the Howard’s algorithm. Maps of optimal switching rules for
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Figure 1: Optimal switching maps (parameters in the text)

two flows (m = 2), capacities N1 = N2 = 10 and two regimes (n = 2) are shown in fig. 1.
A white circle denotes the first regime while a black circle denotes the second regime.
Other parameters were as follows: T1,1 = T3,1 = 8, T2,1 = T4,1 = T2,2 = T4,2 = 4, T1,2 =
= 10, T3,2 = 6, λ1 = 0.2, λ2 = 0.15. Fig. 1, a) corresponds to β1 = 0.6, β2 = 0.65, and
fig. 1, b) assumes β1 = 0.6, β2 = 0.55. For each regime the cycle duration equals 24.
The first flow has greater intensity then the second one. In the first regime the first flow
is critical: the expected number of arrivals during a cycle λ1T

(1) = 2.4 equals the mean
virtual number of served customers during one cycle (if the queue were infinite) β1T1,1.
In the second regime the first flow is not overloaded, λ1T

(1) < β1T1,1. In fig. 1, a) the
second flow is also not overloaded in both regimes. So the optimal switching rule u(·)
recommends to turn on the regime which gives more time to process a longer queue.
For fig. 1, b) the second queue in the second regime is overloaded, λ2T

(2) < β2T2,3.
Thus the regime that dedicates more time to the second queue is chosen more often.

References

[1] Neimark Yu.I., Fedotkin M.A., Preobrazhenskaja A.M. (1968). Operation of an
automate with feedback controlling traffic at an intersection. Izvestija of USSR
Academy of Sciences, Technical Cybernetic. No. 5, pp. 129–141. (in Russian)

[2] Howard R.A. (1960) Dynamic programming and Markov processes. M.I.T. Press.

[3] Eaton J.W., Bateman D., Hauberg S. (2008) GNU Octave Manual Version 3.
Network theory, Ltd.


