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Abstract

In this paper a new multivariate homogeneity test (whether two sets of ob-
servations arise from the same distribution) is proposed. The test is based on
concepts of minimum volume sets and one-class support vector machines. The
test statistic as a matter of fact is test statistic for binomial proportions. We
conducted experimental comparison our test with some statistical tests such as
Hotelling test (the classical test for testing the mean difference for two multivari-
ate populations) [1|, multivariate rank test [8] and kernel Cramer test [2]. For
experiments we used package R [9] — open source environment for statistical
computing and graphics which is freely available for most computing platforms.

1 Introduction

In this paper we propose a new multivariate homogeneity test. The test is based on
concepts of minimum volume sets [4] and one-class support vector machines. Let D
be the random sample from some distribution P on the set X. Let us we want to
estimate a "simple" subset C' of input space X, such that the probability that a test
point drawn from P lies outside of C equals some a priori specified value between
0 and 1. The appproach to solve this problem was proposed in [10|. The approach
consists in constructing of a function f which is positive on C' and negative on X'\C.
The functional form of f is given by a kernel expansion in terms of support vectors.
The approach was realized in a package kernlab [6], which is an extensible package
for kernel-based machine learning methods in R. We used above concepts to reduce a
problem of the statistical homogeneity test construction to a testing problem for the
binomial parameter. Experimental results show that such approach may be used in
statistical practice.

2 Statistical test construction

In this section we present our approach to statistical test construction based on one-
class support vector machines. We first introduce the concept of the multidimensional
quantile function and minimum volume sets [4]. Let P be some distribution in a set
X and let C be a class of measurable subsets X'. Let A(C) be a real-valued function



defined on the sets C' € C. The multidimensional quantile function with respect to
(P, \,C) is defined as

U(a) =inf{\(C): P(C) > a,CeC}, 0<a<l.

It is evident that quantile function measures how large a set one needs in order to
capture a certain amount of probability mass of P. Denote by Cp(«) € C the (not nec-
essarily unique) set that attain the infimum (when it is achievable). If A is Lebesgue
measure then Cp(«) is the minimum volume set which contains at least a fraction
a of the probability mass P. One of the reasons to use the minimal volume sets for
constructing two-sample tests is that they are capable of discriminating different distri-
butions. In [7], one approach to this problem is proposed . In [10], method novelty de-
tection to construct estimators of the minimal volume sets was proposed. The method
enable possibility to constructing sets Cp(a,n) such that P{Cp(a,n)} — P{Cp(a)}
as n — oo. It uses a random sample X = {x1,Xa,...,X,} from the distribution P and
based on generalization of the support vector machines on the case of unlabelled train-
ing data. Now let ) be another distribution on X and we want testing null hypothesis
Hy: P=@Q. Denote by Y = {y1,¥2,-..,¥Ym/} a random sample from the distribution
Q. Also denote by Cp(0.5,n) and C(0.5,m) the minimal volume estimators of sets
Cp(0.5) and Cp(0.5). Put in the following notations. Denote by

e S5 = #{~Xi € X|x; € C’Q(O.5, m} — the number of elements of X that belong to
the set Cp(0.5);

o Sy = #{~yi €EYly; € ép(O.E),TZ} — the number of elements of Y that belong to
the set C'p(0.5).

Suppose the null hypothesis Hy is true; then C’Q(O.S,m) ~ ép(0.5,n) (in the case of
large n, m). Therefore it is clear that the random variable S = S; 4+ S5 has a binomial
distribution with the parameters n +m and p ~ 0.5. So for testing the null hypothesis
Hy: P = () we can use a statistical test on equality binomial proportion to value 0.5.
The test statistic is [5]

where standard error

s jpd-p 1 1
n+m 2Vn+m

It is well known that for large samples the null distribution of the test statistic z is
the standard normal, having the mean of 0 and standard deviation of 1. So, we define
the rejection region (using an « significance level) as z < t,, where ¢, is a—quantile of
standard normal distribution. For samples that are too small one can use the binomial
distribution directly for calculating p—values.



3 Experimental results

We conducted distribution comparisons using our test and some other tests on artifi-
cial data sets. For comparisons we used Hotelling test (the classical test for testing the
mean difference [1| for two multivariate populations.), multivariate rank test 8] and
kernel Cramer test [2]. For estimating Cp(0.5,n) and Cq(0.5,m) package kernlab [6]
was used, which is an extensible package for kernel-based machine learning methods
in R [9]. In all our experiments we used the kernel of the Gaussian radial basis func-
tion. Also we used automatic selection of the kernel width in correspondence with [3].
Experiments were realized on the computational claster of Institute of Applied Mathe-
matical Research of the Karelian Research Centre of the RAS. We have considered the
case X = R? and distributions P and @) are Gaussian.

In our first experiments we investigated the rate of convergence the P{Cp(0.5,n)}
to P{Cp(0.5,n)} as n — oo for various values of d. From these experiments it is follows
that values n ~ m and d such that n/d > 50 ensure that proposed test has significance
level o« < 0.05.

Secondly, samples were drawn from distributions N (0,I) and N (m, I) with various
m (here I is identical diagonal matrix). The experimental rezults show that all tests
under considerations is high superior our test in that case.

Thirdly, samples were drawn from distributions A (0,I) and N (0, cI) with various
0. The rezults show that only Cramer test is somewhat superior our test in that case.

Also we realize group of experiments in the case dissimilarity between two dis-
tributions lies in distributions forms. For example we have investigated the follow-
ing case. Let d = 2r be even. Consider samples that were drawn from distri-
butions A(0,3¥;) and N(0,35), where ¥; is diagonal matrix with elements o, =
Oy Opp = 0, 0py1r41 = 1/0,..., 049 = 1/0 and X5 is diagonal matrix with elements
oy =1/0,...,00 =1/0,0,41041 = 0,...,040 = 0. Our rezults show that our test is
more powerful than kernel Cramer test in this case.

4 Conclusion

On author’s opinion the proposed test may be used in statistical practice in cases when
dissimilarity between two distributions lies in distributions forms.
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