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Abstract

Some special cases of the triangle inequality for geometry of probability dis-
tributions are found. Examples of following numerical inequalities are given.

1 Introduction

The question about how to define a natural differentiable structure on manifolds of
probabilily distributions appeared in the middle of last century. In particular, it was
discussed by Kolmogorov in his unpublished lectures, being read in autumn 1955 in
the institute of Henri Poincare. Later, when the information inequality was proved and
fundamental role of Fisher information matrix was realized, it became clear that the
Fisher matrix defines by itself a metric tensor, which induces a riemannian geometry
on manifolds of probability distributions. The main results for this geometry were
obtained by Chentsov [3] and Amari [l}. The last one coined the term nformation
geometry for it.

Denote by P the set of probability distributions of the measurable space (2, F).
Bhattacharya distance {1] between measures P, @ € P:

o(P,Q) = 2arccosL v P(dw)Q(dw), (1)

defines the spherical geometry on P with scalar product of increments dP;,dP; in
tangent space [1] T(P)} of dot P € P:

(dPy,dPy)p = /ﬂ dPl(d;U()jjz(dw).

A parametric family of measures P(#),6 € © C R¢, forms a finite-dimensional manifold
P(©) C P. Subspace T(8) of tangent space T'(P(8)), formed by the increments of P(#)
along the manifold P{©), can be represented as a result of linear mapping from R:

dP(9) )10
d — ——— = r——
RY S df ( = ,dG) 55 10 € TO)

=1

which induces scalar product for the increments of &:

(d61, dB2)0 = (dPy(6), dPs(6)) pia) = d0;1(0)dby, (2)
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where

d
~ _ [BP(6) BP(H) [ 9P(®) OP(6) 1 | _
1) = (I(H)u—( 80, ° 06, )Pw)_ o 09, 99, P(G)iw),,J_l

is the Fisher information matrix. Then for © = [0;,8;] C R the length of P(O) is

IP(O)] = \/1(9 df > 2 arccos / VP0)P ;) ’ P, P(8:)).  (3)

In this paper some special cases of the triangle inequality (3) was [ound.

2 Special cases of the triangle inequality

Consider Borel space (2, F) = (R, B(R)) and some probability measure P, on it with
differentiable probability density function p(x). Introduce the notation:

_ [ W), _
J"_A_p(w) dr, n=0,1,2,... (4)

Theorem 1. Under u > 0 the following mnequality holds:

Qarccos/R Vo(@)plx = wdz < pu/o. (5)

Proof. Let the family P(u), u € R, be generated by the shifts of measure Fy. Then
P(u) has the density function p(x — x} and:

I{u) = (p((ac ) dm—Jg,/ VI(z)dx = u\/ g,

R —H
whence by (3) under 8, = 0, 0 = 1 > 0 we get (5). O

Some examples are given below:

1) pla) = —\/12—_;e-°5?2,¢fn= fR *2p(a)dz, Jo = 1, [ V@l — pyde =
dx
Voo

om0 5((z =/ P/ 2P) . kP8 (=)>% = u > arccos (e—o 5u2),u > 0.

2) p(z) = %e""ﬂ, Jn = Ax“p(:n)da:, Jo = 11[1& Vp(x)p(z — p)dr =

= / d—:ze“j Szl +le—ul) — (E + 1) e = £ =y > arccos | - +1 ,u > 0.
R 2 2 2 -
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Theorem 2. Under zp(z) — 0,2 — +oo, and 0 > 0,p € R, the following mequality
holds:

2arccosf\/ TH )d < vy/Joarch (1+,u +2nsm + s 72)‘ (6)

202

where arch(z) = In (z + 22 — 1) 15 the inverse hyperbolic cosine and:

s=0—-1L nn=JA/Jo, o=(L=1)/Jo, v=1/12— "}

Proof. Let the family P{u.0), (1, 0) = (0p,6:) € [ = RxR,, be generated by the shifts
and stretchings of measure Fy. Denote: Z = (x—u)/o, then: 92/0u = —1/0, 3%/00 =
—I/o = 02/00, = —7*/0|,~0,. Measure P(u, o) has the density function o~ p(Z) and
for 4,7 € {0,1} ({(z) = Inp(x)):

- /Ha(z(x) o) /H(—Z(m)———*)p(:z)

=ty =13

Y {(p O o -4y i =

= [/ £p (t)dt = ()| — / V" p(t)dt = _7] Nl
R A N

0‘2

Therefore on twodimensional surface P(II) ¢ P. formed by measures P(u, o), metric
(1) induces riemannian geometry with metric tensor {2) I{u,0) = 1{0,1}/0% As it
known [2], the tensor of such form in the halfplane generates hyperbolic geometry.
Using transformation: 11 5 (@, 6) — (i, 0) = (& + a,b5) € I1, (a,b) € I1, let us bring
the tensor to the canonical form (Iog = I3, Iy = 0):

Jo-du +2J; - dudo + (Jo — 1) - do? = Jo - di® + 2(Joa + Jib) - dde+
-+ (J0612 + 2Jiab + (.]2 - l)bz) . d5*.

By equating factor didd to zero, and factors dji? and d&? together, we get: a =
~v1/%, b=1/v, whence (&, &) = (4 + o, 07) and:

7(;]0 (dig® + d5°).

J)
dp® = p2(P(u, ), P( + dp, 0 + do)) = a_g(dﬁ2 +da?) =
This element of length dp in coordinates (fi, &) corresponds to the model of Lobachevsky
geometry, named the Poincare model in halfplane [2]. Therefore distance g( P, P;)

between measures P, = P{u,,0,)|.~12 along the surface P(II), i.e. the length of the
shortest curve, lying in P(IT) and connecting P, P>, satisfies the following relation (2]:

] (1 — @) + (81 — 32)?
h =1+ ,
¢ (’YV Jo) 20,02
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where ch(z) = (¢ +e7%)/2 is the hyperbolic cosine. In particular, under P, = P(u, o),
= P(0,1) we get:

—

h (%ﬁ) 14 (#+«S';1;i:~ Col s +2;;2;1 +s'n
Then inequality p{ £, ) < p( P, P») takes the form (6). O
Note, that under v, = ¢ = 0 the right-hand side of (6):
Jo - arch(1 + (o0 — 1)2/20) = v1/Jp - arch(ch{ln 6)) = v/ Jy - | Ina].

Under conditions ¢ = 1 and p > 0 the left-hand parts of inequalities (5) and (6} are
match. while parts of (6) are closer to each other, than parts of (5):

2
2arccos/ Vplx — ple)dz < v/Joy arch (1 + ;_”)’2) < &/ Jopt. (7)
R

Examples of formula (6} for the density functions p(x), examined after Theorem 1. are
given below (v = u/2 > 0):

V3. cos p(FPo, P(p. o))
- ’ 2 o

dx (xa)? + (z - p)? 20 u?
expq— 3 =\ TPy T T
R V270 4o o2 +1 4(c? + 1)
20 u? 1 pr+2(c - 1)°
= wpd——t Al < Zareh 1+
arccos ( ] th{ 4(02 n 1) }) < \/5 arc (l 1o ,

20 | In o _osu2) _ arch(l +u?)
< w?) o ATt T u)
arccos ( o 1) <7 , 8rccos (e ) <

1) J(J:l: le(]a J2=31 P}’l=0? 72=23 =

u=0 \/§ a=1
Py, P(u,
2) o=1, /1=0, =2, =0 r=1 v=1, cosp( > 2(# 7)) =

r—p

/ NG exp{ : (l:r:! = )} = ._2..._‘@_ (ge /% _ emrl?) =
= arccos ( 2Vo (e /2 — ehl2 ) < Laren ( N 1+ (0' —-1)2 ) |

o2 —1
arceos 2\/5 < |1n0[ , arccos a.rch l+ 2’ )
g+1 2 =0 P
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