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Let Vn = (GF(2))n. Denote by FVn
2 the set of all Boolean functions and by An the

set of all affine functions of n Boolean variables. Let FVn
2 (r) ⊆ FVn

2 be the set of all
Boolean functions with Hamming distance to An not exceeding r. It is known [1] that
FVn

2 (r) = FVn
2 if r ≥ 2n−1 − 2n/2−1. Let’s define xn(r) by the equation

r = 2n−1 −
√

2n−1
(
n ln 2− 1

2
ln(4πn ln 2) + xn(r)

)
.

According to a theorem from [2] for the set FVn, 0
2 (r) of all Boolean functions with

Hamming distance to the set of linear functions not exceeding r for n, r →∞, xn(r) →
x ∈ R we have

|FVn, 0
2 (r)| = 22n

(B(x) + o(1)) , B(x)
def
= 1− e−e−x

, (1)

that is for almost all Boolean functions of n variables their distances to the set of linear
functions have the form

2n−1 −
√

2n−1
(
n ln 2− 1

2
ln n

)
+ O

(√
2n/n

)
, n →∞.

We find two-sided estimates for |FVn
2 (r)| which are valid for all nonnegative r <

2n−1 − 2n/2−1. Similar estimates for |FVn, 0
2 (r)| show that for n, r →∞ the expression

22n
B(xn(r)) from (1) isn’t a correct asymptotics for |FVn, 0

2 (r)| if xn(r) →∞.
Let

N1(n, r) =
r∑

m=0

Cm
2n , N2(n, r) =

r−2n−2∑
m0=0

Cm0

2n−1

r−m0∑

m1=2n−1−(r−m0)

Cm1

2n−1 ,

N3(n, r) =
r−2n−2∑

v=0

r∑

u=2n−1−r+2v

Cv
2n−2 Cu−v

2n−2 S(r − u, r + u− 2v − 2n−1),

where
S(a, b) =

∑

g,h>0:
g+h6a, |g−h|6b

Cg
2n−2 Ch

2n−2 .

Theorem 1. a) If 0 6 r < 2n−1 then |FVn
2 (r)| 6 2n+1N1(n, r) and

2n+1N1(n, r)− 4 C2
2nN2(n, r) 6 |FVn

2 (r)| 6



6 2n+1N1(n, r)− 4 C2
2nN2(n, r) + 8 C3

2nN3(n, r). (2)

b) If 0 < r < 2n−2 then |FVn
2 (r)| = 2n+1N1(n, r).

c) If 2n−2 6 r < 2n−2 + 2n−4 then |FVn
2 (r)| equals to the right part of (2).

Analogous statements (with natural changes) are valid for |FVn,0
2 (r)|, for example,

2nN1(n, r)− C2
2nN2(n, r) 6 |FVn,0

2 (r)| 6

6 2nN1(n, r)− C2
2nN2(n, r) + C3

2nN3(n, r). (2′)

By means of results of [3] we prove that for 0 < r < 2n−1 − 2n/2−1

(
2n

r

)r (
2n

2n − r

)2n−r
1√

2n+1πV
(
1− r

2n−1

)
(

1− 1

2nV
(
1− r

2n−1

)
)

<

< N1(n, r) <

(
2n

r + 1

)r+1 (
2n

2n − r − 1

)2n−r−1
1√

2n+1πV
(
1− r+1

2n−1

) ,

where V (z) = (1− z) ln(1− z) + (1 + z) ln(1 + z).

As the obvious corollary of Theorem 1 we obtain inequalities

2n+1N1(n, r)(1−Q(n, r)) 6 |FVn
2 (r)| 6 2n+1N1(n, r),

where

Q(n, r) =
4 C2

2nN2(n, r)

2n+1N1(n, r)
<

2nN2(n, r)

N1(n, r)
.

Theorem 2. If n > 10, r > 2n−2 and y = 2n−1 − r > 0 then

Q(n, r) <
2

5
· 2n/2

(
2n−2

y
+ 1

)2

exp

{
− y2

2n−1

(
1− 3y

2n

)}
.

Corollary. If n > 2, c > 1 then

Q
(
n, 2n−1 −

√
cn2n−1

)
<

1

2
23n/2 exp

{
−cn

(
1− 3

√
cn

2(n+1)/2

)}
.

The last inequality shows that for any c > 3
2

ln 2

Q
(
n, 2n−1 −

√
cn2n−1

)
→ 0, n →∞,

i. e. the left and right parts of (2) and (2′) are asymptotically equivalent when n →
∞, 2n−1−r√

n2n−1
>

√
3
2

ln 2. According to [2] this domain of values (n, r) is close to the

domain containing almost all Boolean functions when n →∞.



From (1) and (2′) it follows that if n, rn →∞ and xn(rn) →∞ then

|FVn, 0
2 (rn)|

22nB(xn(rn))
<

2nN1(n, rn)

22nB(xn(rn))
<

e
√

2n−1n ln 2

2n−1 − rn − 1
,

i. e. for 2n−1 − rn − 1 > 3
√

2n−1n ln 2 the ”main” term of right hand side in (1)
overestimates |FVn, 0

2 (rn)|.

Let f = f(x1, . . . , xn) ∈ FVn
2 . For the partition {1, . . . , n} = Is

n ∪ Jn−s
n , Is

n =
{i1, . . . , is}, Jn−s

n = {j1, . . . , jn−s} and for the collection of constants Cn−s = {c1, . . . , cn−s ∈
F2} we define the subfunction g(Jn−s

n , Cn−s; y1, . . . , ys) ∈ FVs
2 of f as the function ob-

tained from f(x1, . . . , xn) by the following change of variables: xjk
= ck (k = 1, . . . , n− s),

and xim = ym (m = 1, . . . , s).
Let ν(f, s, r) be the number of subfunctions g(Jn−s

n , Cn−s; y1, . . . , ys) ∈ FVs
2 with

distance from As not exceeding r, i. e. the number of pairs (Jn−s
n , Cn−s) such that

g(Jn−s
n , Cn−s) ∈ Fs

2(r).

Theorem 3. If ϕ(x1, . . . , xn) is a random boolean function with the uniform dis-
tribution on FVn

2 then for r < 2s−2

E ν(ϕ, s, r) = Cs
n 2n−2s+1

r∑
j=0

Cj
2s ,

2n−2s+1Cs
nC

r
2s 6 E ν(ϕ, s, r) 6 2n+1 Cs

n

(
2
3

)2s−2

.

Note that the left hand side tends to infinity if s 6 log2 n, n →∞, and the right hand
side tends to 0 if s > log2 n + 3, n →∞; thus a ”threshold” value of s belongs to the
range from log2 n to log2 n + 3 when n →∞.
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