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Abstract

Simple conditions for the inconsistency of classical goodness-of-fit tests in
case of very sparse categorical data are given. The conditions have the following
interesting feature of ”reversed consistency”: the greater deviation from the null
hypothesis the less power of the test. In the paper χ2-type criterion based on
profile statistics is introduced as an alternative to classical tests in the case of
sparse categorical data.

1 Introduction

Sometimes the inclusion of additional variables in a statistical analysis completely
changes the previous conclusions. In the statistical analysis of categorical variables
this phenomenon is known as Simpson’s paradox. Consequently, all available variables
should be included into this kind of analysis. Currently the amount of information
is very extensive, therefore problems related to a large dimension and/or sparsity of
data arise rather frequently. The sparsity problem is especially topical for categorical
data. Relationships between quantitative (continuous) variables are usually described
by covariance matrices. Thus, the number of model parameters increases quadratically
with n, the dimension of the data. For categorical data, the number of unknown
parameters grows exponentially with n. Consequently, even for a moderate number
of categorical variables, many cells in the contingency table are empty or have small
counts. Traditionally, expected (under the null hypothesis) frequencies in a contingency
table are required to exceed 5 in the majority of their cells. If this condition is violated,
the χ2 approximations of goodness-of-fit statistics may be inaccurate and the table is
said to be sparse (Agresti, 1990).

Statistical inference problems caused by sparsity of contingency tables are widely
discussed in the literature. Several techniques have been proposed to tackle the prob-
lem: exact tests and alternative approximations (Agresti, 1990; Hu, 1999; Müller and
Osius, 2003), smoothing of ordered data (Simonoff, 1995), contingency table smoothing
by means of generalized log-linear models with random effects (Coull and Agresti, 2003),
the parametric and nonparametric bootstrap (Davier, 1997), Bayes approach (Agresti
and Hitchcock, 2003; Congdon, 2005), and other methods (see, for instance, Kuss, 2002).
They all are not applicable or have some limitations in case of very sparse contingency



tables. In this case, the classical statistical criteria become simply uninformative (in-
consistent).

We formalize this statement in the next section. In the last section χ2-type criterion
based on profile statistics is introduced as an alternative to classical tests for very sparse
categorical data.

2 Inconsistency of classical tests

In this section simple conditions for the inconsistency of classical goodness-of-fit tests in
case of very sparse categorical data are given. Though rather restrictive, the conditions
have the following interesting feature (”reversed consistency”): the greater deviation
from the null hypothesis the less power of the test.

Let yj denote an observed frequency of the category j ∈ J = Jn := {1, . . . , n} in a
sample of N iid observations. Hence Y := (y1, . . . , yn) ∼ Multinomialn(N, P ) where
P := (p1, . . . , pn) ∈ P ,

P :=

{
q ∈ Rn : qj ≥ 0, j = 1, . . . , n,

n∑

i=1

qi = 1

}
.

We consider very sparse categorical data (contingency tables). Here it means that
n = n(N), P = P (N) as N →∞ and

pmax := max
j∈J

pj = pmax(N) = o(N−1), N →∞. (1)

Let us assume for simplicity that a simple hypothesis

H0 : P = P0 versus H1 : P 6= P0 (2)

is to be tested on the basis of observed frequencies Y with a given P0 = (p0
1, . . . , p

0
n) ∈ P .

Suppose that all components of P0 are positive and consider the likelihood ratio statistic

G2 = G2(P0, Y ) :=
∑

j∈J

yj log

(
yj

Np0
j

)
=: H(Y ) + L(P0, Y )−N log(N),

H(Y ) :=
∑

j∈J

yj log(yj), L(P0, Y ) := −∑

j∈J

yj log(p0
j).

It turns out that for sparse data the term L(P0, Y ) often dominates H(Y ).

Proposition 1. Assume sparsity (1). Then

EP G2(P0, Y ) + N log(N) = EP L(P0, Y ) + O(N2pmax),

VarP G2(P0, Y ) ≤
(√

VarP (L(P0, Y )) + O (N
√

pmax)
)2

.



Proposition 2. Let P0 be a nondecreasing sequence. Suppose that there exists
j0 ∈ {2, . . . , n} such that ∀j < j0 the probabilities pj ≤ p0

j , ∀j ≥ j0 the probabilities
pj ≥ p0

j , and for some p̄ = p̄(N) > 0 and positive constants ∆ and D

∑

i∈J

(p0
j − pj) log(p0

j) ≤ −∆, (3)

∑

i∈J

p0
j

(
log(p0

j)− log(p̄)
)2 ≤ D2N. (4)

If (1) holds then

EP G2(P0, Y )− EP0G
2(P0, Y )√

VarP0G
2(P0, Y )

< −∆

D
+ O(Npmax). (5)

Example. For a given β > 1 and ρ ∈ (0, 1/2), set m =
[
Nβ

]
, n = 2m, j0 = m,

p0
j = ρ/m, ∀j ≤ m, p0

j = (1− ρ)/m, ∀j > m,

pj = 0, ∀j ≤ m, pj = 1/m, , ∀j > m.

Then the conditions of Proposition 2 are fulfilled and one can take ∆ = ρ
2
log

(
1−ρ

ρ

)
.

Corollary. Let assumptions of Proposition 2 be valid. Then the likelihood ratio
criterion is inconsistent for testing problem (2).

Remark 1. Note that the asymptotic bound for the decrease in power given in (5)
is proportional to −∆ whereas the constant ∆ characterizes via (3) the deviation of
the true distribution P from the null hypothesis.

Remark 2. Actually, the inconsistency stated in Corollary 1 is not an exceptional
feature of the likelihood ratio statistic G2. Analogous inconsistency results can be ob-
tained for the other goodness-of-fit criteria, for example tests based on power-divergence
statistics (Cressie and Read, 1984).

3 Profile statistics

For a given positive integer k, denote Jk := {1, . . . , k}. Let h : JN × (0, 1) → Rk be a
given vector function, H(j, z) := (h1(j, z), . . . , hk(j, z))>. Define the profile statistic as

T = T (Ĥ) :=
(
CovP (Ĥ, Ĥ)

)−1/2
(Ĥ − EP (Ĥ)) (6)

where

Ĥ :=
n∑

j=1

h(Yj, p
0
j). (7)

For the fixed k, under some additional conditions an asymptotic normality of the
statistic T (Ĥ) can be proved using standard methods (Kolchin et al. 1978).



The power of the tests based on χ2-type statistics X2 := |T (Ĥ)|2 crucially depends
on the choice of k and the vector function H ∈ Rk. Sometimes, for a given structure of q
as in the example above, the choice of H is rather obvious. Otherwise, the problem can
be reduced to the problem of supervised feature selection and dimensionality reduction.
Given a large initial class H of (linearly independent) functions h : JN × (0, 1) → R,
the dimension k is chosen and the components of the vector function H are selected
from it, for instance, by making use of the reproducing kernel Hilbert spaces and the
projection pursuit methods (principal component analysis) (Fukumizu et al., 2004).
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