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Abstract

A key component to prevention and control of complex diseases, such as can-
cer, diabetes, hypertension, is to analyze the genetic and environmental factors
that lead to the development of these complex diseases. We propose a Bayesian
approach for analysis of gene-environment interactions that efficiently models
information available in the observed data and a priori biomedical knowledge.

1 Introduction

The analysis of gene-environment interactions is complicated by the fact that many
variables of interest to biomedical researchers, such as dietary intake and cigarette
smoking are very difficult to measure on individuals. For example, in large epidemi-
ologic studies of an impact of diet on development of a disease, nutrient intake is
commonly measured using the food frequency questionnaire (FFQ). It is well known
that the FFQ as a measure of long-term diet is subject both to biases and random errors
[1]. The measurement error causes bias in estimates of gene-environment interactions
[2] thus masking the features of the data and hence leads to loss of power. The loss of
power prevents researchers from detecting important relationships among variables [3].
Massive measurement error is well known [4] to result in skewed sampling distribution
of parameter estimates and the skewness is more pronounced for small sample sizes.
Hence conventional estimation and inference based on Normality assumption are not
precise. The Bayesian approach offers an advantage by specifying a priori distribution
that can shrink the parameter estimates towards the prior thus bringing the sampling
distribution of parameter estimates closer to Normal [5].

Conventionally, case-control data are analyzed using prospective logistic regres-
sion ignoring the fact that under this design subjects are sampled into the study
conditionally on their disease status. [2] and [5] developed an efficient semipara-
metric pseudo-likelihood approach for analysis of case-control studies. The form of
this pseudo-likelihood function offers several advantages. One is that it allows to in-
corporate information about the probability of disease, what cannot be done in the
conventional analysis. Further, the formulation of the pseudo-likelihood function does
not require specification of the distribution of environmental variables measured ex-
actly. These variables include age, ethnicity, bmi and other demographic and clinical
measurements. Thus gains in efficiency can be achieved by not having to model a
distribution of a multivariate vector of these measurements. Validity of the Bayesian
analysis needs to be examined when the proposed likelihood function is not a proper
likelihood.
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2 Semiparametric Pseudo-Likelihood

Let D be the categorical indicator of disease status and let D = 0 denote the disease-
free (control) subjects and D = 1 - the diseased (case) subjects. Suppose there are
I genetic markers are spanning the genomic region of interest and define G be the
observed genetic markers. Denote (X,Z) denote all of the environmental (non-genetic)
covariates of interest with X denoting the factors susceptible to measurement error.
Given the environmental covariates X and Z and genetic data G, the risk of the disease
in the underlying population is given by the polytomous logistic regression model.

pr(D = 1|G,X,Z) =
exp{β0 + m(G,X,Z, β)}

1 + exp{β0 + m(G,X,Z, β)}
. (1)

Here m() is a known function parameterizing the joint risk of the disease from G, X
and Z in terms of the odds-ratio parameters β. For the i-th marker, denote the two
alleles by Mi and mi, with frequencies PMi

and Pmi
. Define the dummy variables that

model genetic effect in the following form.

Ai =





1 if Gi = MiMi

0 if Gi = Mimi

−1 if Gi = mimi

, Bi =





−P 2
mi

if Gi = MiMi

PMi
Pmi

if Gi = Mimi

−P 2
Mi

if Gi = mimi

. (2)

The following specification of the risk function models both additive and dominance
effects of genotype, as well as the multiplicative gene-environment interaction.

mk(G,X,Z; β) = XβkX + ZβkZ +
I∑

i=1

AiβkAi +
I∑

i=1

XAiβkAXi +
I∑

i=1

ZAiβkAZi

+
I∑

i=1

BiβkDi +
I∑

i=1

XBiβkDXi +
I∑

i=1

ZBiβkDZi. (3)

The regression coefficients βkAi
and βkDi

model risk due to the additive and domi-
nance effect, respectively [5]. The remaining terms capture the multiplicative gene-
environmental interaction. Form (3) of the risk function offers an advantage, namely
that the linkage disequilibrium (the genetic term used to describe dependence between
genetic markers that are located closely) is captured in the regression coefficients [5].
The model (1)-(3) cannot be used directly for analysis since the covariate X is mea-
sured with error. Let W denote the error-prone version of X. We assume a parametric
model for the measurement error process of the form fmem(w|D,G,X,Z; ξ).

Let n0 and n1 be the number of control and case subjects, respectively. In addition,
let us denote πk = pr(D = k), k = 0, 1. Consider a sampling scenario where each
subject from the underlying population is selected into the case-control study using a
Bernoulli sampling scheme, where the selection probability for a subject given his/her
disease status D = 1 is proportional to µ = n1/π1. Let R = 1 denote the indicator
of whether a subject is selected in the sample. Let us denote κ = β0 + log(n1/n0) −
log(π1/π0). In addition, let Ω = (β̃T

0 , βT, ΘT, κ̃T)T, B = (ΩT, ηT)T and υ = (ηT, ξT)T.
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Define

S(k, g, x, z; Ω) =
exp

[
1(k=1)(k) {κ + m(g, x, z; β)}

]

1 + exp {β0 + mj(g, x, z; β)}
pr(g; θ).

Motivated by [5], we employ the following pseudo-likelihood function in place of the
likelihood function. Note that by design the data are collected retrospectively (case-
control sampling design), but the pseudo-likelihood is describing the data as if they
were coming from a random sample.

LPseudo(k, g, w, z; Ω, η, ξ) ≡ pr(D = k,G = g,W = w|Z = z,R = 1)

=

∫
S(k, g, x, z; Ω)fmem(w|k, g, x, z; ξ)fX(x|z; η)dx

∑
k∗

∑
g∗

∫
S(k∗, g∗, x, z; Ω)fX(x|z; η)dx

. (4)

Note that this pseudo-likelihood function does not assume any distribution on the
environmental variables measured exactly, Z, thus creating a semiparametric feature
of the model.

3 Bayesian Analysis

Validity of the Bayesian analysis based on (4) needs to be examined when the proposed
likelihood function is not a proper likelihood. [6] proposed a numeric technique that
can be used to validate our Bayesian approach under this pseudo-likelihood function
and exploit it to draw inference about parameters based on the posterior distribution.
Due to the complexity of the pseudo-likelihood function, the posterior distribution of
the parameters is not in explicit form, therefore Markov Chain Monte Carlo (MCMC)
algorithms are required to sample from this posterior distribution to make necessary
inference. The joint posterior distribution for the MCMC calculations can be written
in the following form.

LPseudo(k, g, w, z; Ω, η, ξ) × |ΣB|
−1/2exp

{
−

1

2
(B − µB)TΣ−1

B
(B − µB)

}

×η
−1/2
2 exp

{
−(µx − η1)

2/(2η2)
}
× (σ2

x)
−A−1exp

{
−B/σ2

x

} I∏

i=1

I(0,1)(θi).

4 Simulation Experiments

To illustrate performance of the proposed method we performed a simulation study.
The genetic information was simulated according to the Hardy-Weinberg Equilibrium
for two marker loci PMi

= 0.25, i = 1, 2. The environmental covariate (X) is binary and
measured with error with misclassification probabilities with misclassification probabil-
ities being 0.20 for exposed and 0.25 for non-exposed subjects. The results are based on
500 replicates of 1000 cases and 1000 controls. Simulation results presented in Table 1
illustrate that the Naive approach that ingores existance of measurement error results
in biased parameter estimates, while the proposed approach eliminates bias and results
in parameter estimates that are less variable.
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Table 1: Bias and Root Mean Squared Errors (RMSE) of the Naive approach that ingores
existance of the measurement error and the proposed method.

Naive Approach Proposed Method

Parameter True Value Bias RMSE Bias RMSE
β0 -5.000 -0.071 0.037 -0.023 0.013
βX 1.099 0.083 0.035 0.003 0.027
βA1 0.693 -0.057 0.017 -0.009 0.013
βA2 0.000 -0.073 0.025 0.003 0.015

βAX1 0.693 0.175 0.071 0.006 0.021
βAX2 0.693 0.118 0.051 0.005 0.023

5 Discussion

We proposed a semiparametric Bayesian approach for the analysis of gene-environment
interactions to address a difficult but common situation when the environmental ex-
posure is measured with error. The proposed approach was successfully applied to the
Colorectal Adenoma Analysis.
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