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Abstract

The goal of this paper is to find out when we are able reliably to distinguish
a random sequence that does not have an embedded random sequence from a
sequence that has it.

1 Introduction

Nowadays models of embedding are used in solving problems of intellectual property
rights [1,3]. Statistical issues in this application are underdeveloped, so the actual
problem is a construction and analysis of the statistical tests for embedding.

2 Probabilistic models of embedding

The mathematical model of a random sequence that does not have an embedded ran-
dom sequence can be rcpresented as a sequence of N-dimensional random binary col-
umn vectors Iy, Za, . ... T 3]

!
T =(Tn. T ... Tn) EVn, t=1....,n,

where n is the size of the sequence; Vy = {J = (ji)}: jr € V ={0,1}, k=1,...,N}
is the set of 2% binary N-vectors. A binary vector z; will be represented by the number
<y >=1xq+22n+.. . +2V gy, < >EA= {0,1....,2” -1}

Define: N = Nj+No, 1 < Ny < N, m, = (me1,...,men,) € Wy, J= (J(’”,J(’z))’ €
Vv, Juy € Vi, Jo) € Vv—n,- If a hidden sequence {m,} is embedded into {z;} we
observe the following sequence:

T = (Eiay, Tyy)s ey € Vg ey € Vvemys

Lt(1)s & =0, (1)

By = Tayy L) = &, + (1= E)taqr) = { My & =1

t
n=nlln. &)=Y & Ple=1}=1-Plg=0}=8t=1,....n. (2
1=1

where & is a sequence of independent Bernoulli random variables that determine the
embedding process; m,, 1s a sequence of independent and identically distributed random
binary Nj-vectors, P{m. = Ju)} = p<s,,>, Juy) € V,, that represents an embedded
random sequence. The random sequences {z,}, {&}, {m,} are independent.
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Theorem 1. Assume that x; € Vy 15 a stationary Markov chain with the state space
Vr, a stalionary probability distribution m = (m,) and any one-step transition proba-
bility matrix P = {p,,}, m, € Vy, 13 a random sequence of Ny-vectors that represents
an embedded random sequence, P{m, = J,} = P<syy>+ Ja) € Vi, and the observed
sequence Iy 18 obtained according to (1). Then the two-dimensional probability distri-
bution Tejs cx» = P{T1 = J, 3 = K}, J K € Vy of the sequence &, is:

Tegsci> = (1 — 13)27T<J>p<J>.<K> + B(1 - B)x

21 -] 2M1 1
X(Pd«'“p E T i>P<ts> 2N <K > 40 T Pdyy> E W2N1<J(2,>+UP2N:<.;(2)>+u.<K>)+

v=0 v=0
2N}
"H32‘ ToN
Paigy>P<Kqy> 2N < dig) > 0PN < gy > 402N <K 5y > B
wh=0

3 Statistical testing of embedding

Assume that the the sequence {z,}, that does not contain an embedded random se-
quetice, is a sequence of independent and identically distributed (i.i.d.) random binarv
N-vectors which have a fixed discrete probability distribution: 7% = (7%), 2, =
P{z, = J}, J € Vy. A marginal probability distribution of the subvector (zy, ..., ) €
Vi, p< N is:

aN-r_
K, =Plzan=fi. .. T =Jp} = Z Morpscgos J € Vo, 120,...,2P = 1. (3)
v=0
We observe a sequence X = (&, 15, ...,%,) € Vun of the finite size n. Let us construct

the Neyman-Pearson statistical test for two hypotheses:
Hy - {)E' does not have an embedded sequence},

H,=H,: {5( has an embedded sequence},
where 3 is a parameter defined in (2). The error probability of the first typeis e € (0.1).
Translating our problem into precise terms, we come to the hypotheses:

Hy: k=k" H,:k# K>, (4)

where & = (&,) is the marginal probability distribution of the subvector (%4, ...,%;,) €
Vp, N1 S P S N R<J> = P{.’f?ﬂ = j]_, v ,i‘f}p’p = jp}s J = (jl.,... .,jp)lr S Vp. Then the
statistical test is:

' _ 0, T,(X)<34, . X (1 — nkd)?
d=d(X) = AN X5'¢ W Z ) 5
(X) {1, n)zs =L T (5)

where ut S Sctin, by 1 =0,...,27 — 15 & is a critical value.
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When the null hypothesis is true, the asymptotic (n — o0) probability distribution
of the test statistic Tp(f{ ) is a x*-distribution with 27 — 1 degrees of freedom. If € is a
significance level of the test then the critical value of the test (5) is § = (x3,_,) (1 —¢),
where (x3,_,) "1 (1 — ¢€) is the {1 — ¢)-quantile of the x*-distribution with 2? — 1 degrees
of freedom, 0 < ¢ < 1.

To find the power of the statistical test (5) we assume that the alternative hypoth-
esis H, is true and the probability distribution of the observed sequence that has an
cmbedded sequence is:

- 1 _ 0 0 _ (0,0 0
F=k =K +A4, & =KAo K1)y &= (Dg, A, .0, Bgey),
i _ .
where 0 TA; =0, ~ k0 <A <1-x8, i=0,1,....2° - 1.

Theorem 2. When the alternative hypothesis is true: & = k! = &% + A, the asymyp-
totic (n — 00) probabzlzty distribution of the test statestic Tp(X X), defined by (5), 1s

the noncentral x*-distribution with 27 — 1 degrees of freedom and the non-centrality

parameter -
?-1

A2
A2 =ng(r’,A), g(x%A)=> " =¢. (6)

K
=0
Note that the results of Theorem 2 are in accordance with the results in [1].
Now we find out what is the minimal size n* = n*(w*) of the observed sequence
{;} such that we are able reliably to identify the existence of an embedded sequence:

=t (w') = mnin{xg,,__l‘)\%(é) <1-w'},

where w” is a fixed power of the test (5); x3,_, ,»(-) is a function of the noncentral
x>-distribution with 2¢ — 1 degrees of freedom and the non-centrality parameter A2.

Theorem 3. Let m, € Vy, be an embedded random sequence, P{m. = J} =
1/2M, Juy € Vy,, and the observed sequence I, is obtained according to (1). Now
if 70 = (79) is a probability distribution of x,: 70 = P{< x; >= i}, i € A, then,
when Hy : {8 > 0} is true, the non-centrality parameter of the asymptotic noncentral

x2-distribution of the test statistic Ty(X), defined by (5), is:

s3 A
2 _ 2 _1 - - 0 _ .0
Ap =nf Z 70, S1= IN1 Z ‘”2”1-«:'}(2)>+! Teg>- (7)
Jevy T <I> =0

This theorem allows to analyze a dependence of the power of the test on the propor-
tion 3 of an embedded sequence. In the following example we show how the proportion
B of an embedded sequence affects the power of the statistical test.

Example. We calculate a power of the test using Theorem 3 under the following

1
parameter values: n =512 N=3, Ny =1, =% = 0 (5,3.7,5,5.4,8,3Y. In fig. 1

there is a plot of dependence of the power of the test on the proportion 3 of embedded
sequence. For example, if 3 > 0.76, then the probability of the correct rejection of the
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Figure 1- Dependence of power w of the test on proportion 3 of embedded sequence

null hypothesis is more 0.95. If 3 < 0.22, then the probability of rejection of the null
hypothesis, when the alternative hypothesis is true, is less than 0.05.

Similarly, we construct a statistical test when a sequence, that does not contain an
embedded sequence, is a stationary Markov chain and the one-step transition proba-
bility matrix 1s:

P’ = (p?J), p?J =P{<z >=3 <z >=1i}. i,j€ A

Let X = (%),24,....%,) € Von be an observed sequence of finite size n. The uull
and the alternative hypotheses are Hy : P = P% and H, : P # P° respectively. The
statistical test [2] is:

v N -1 02
Y 0, T(X) <4 o 2 (ftJ - fip, )
d=d(X) = S0 = ¥ e 8
(X) {1, T(X)> 4 (X) ~ fp° )
1,7=0 3
Whe;'e fo = 3 0 8es, 500>y fo = 21y 0ca» 0 4 I8 a critical value.

When the null hypothesis is true. the asymptotic (n — 00) probability distribution
of the test statistic (8) is the y?-distribution with 2V (2% — 1) degrees of freedom {2].
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