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Abstract

We consider random Internet graphs consisting of N + 1 vertices under the
condition that the sum of vertex degrees is equal to n. We get the limit distribu-
tion of χ2− type statistic for these graphs such that N,n →∞, 1 < C ≤ n/N <
ζ(τ), τ > 0, where ζ(τ) is the Rimann’s zeta-function.

The asymptotic behaviour of the corresponding statistic is well-known for the poly-
nomial scheme connected with the goodness-of-fit χ2 test. However, the need to obtain
such result appears also when testing statistical hypotheses in many combinatorial
problems. In the present paper we consider one of such problems. The object of the
research is the known structure of random graph (see e.g. [2, 7]), which is a suitable
model of the Internet. Therefore, such models are called Internet graphs. The model
is defined as follows. Let the number of the vertices in the graph be equal to N + 1
and vertices are numbered from 0 to N. The degrees of the vertices η1, . . . , ηN are
drawn independently from power-law distributions with positive exponents τ1, . . . , τN

such that
P{ηi ≥ k} = k−τi , i = 1, . . . , N, k = 1, 2, . . . (1)

The vertex 0 is auxiliary in character and has the degree 0 if the sum of vertex degrees
η1 + . . . + ηN is even, otherwise the degree is 1. It is clear that we need to use the
auxiliary vertex 0 because the sum of degrees of all graph vertices must be even.

To describe of the graph we will use the notion of a semiedge or stub, i.e. an
edge incident to a concrete vertex but with the adjacent vertex not defined yet. All
semiedges of vertices are numbered in arbitrary order. The graph is constructed by
joining each stub to another equiprobably to form edges.

There are many papers where the results describing the limit behaviour of different
characteristics of random graphs were obtained. In [2] it was found that in practice
the typical values of parameters τ1, . . . , τN are usually the same and belong to the
interval (1, 2). In [1, 6] it was for the first time suggested the generalized allocation
scheme is used to study asymptotic behaviour of Internet graphs. This method has
been introduced and supported by Kolchin V.F. (see e.g. [3]).

We consider the subset of Internet graphs under the conditions that τ > 0 and
η1 + . . . + ηN = n. Let the null hypothesis be that the parameters of distributions (1)
are the same and equal to τ : τ1 = τ2 = . . . = τN = τ. To test this hypothesis we
propose the statistic

χ2 =
N∑

i=1

(ηi − n/N)2

n/N
. (2)



Let ξ1, . . . ξN be independent identically distributed random variables such that

P{ξ1 = k} =
λk

1− (1− λ)Φ(λ, τ, 1)

(
1

kτ
− 1

(k + 1)τ

)
, (3)

where k = 1, 2, . . . , 0 < λ < 1 and Φ(x, s, a) is the Lerch transcendent function:

Φ(x, s, a) =
∞∑

k=0

xk/(k + a)s, a > 0. (4)

Let the parameter λ = λ(n,N) of the distribution (3) be determined by the relation

Φ(λ, τ, 1)− (1− λ)Φ(λ, τ − 1, 1)

1− (1− λ)Φ(λ, τ, 1)
=

n

N
. (5)

Denote ν1 = ξ1(ξ1−1)/2, a = Eν1, σ
2 = Dν1, ρ = cov(ξ1 , ν1 )/

√
Dξ1Dν1 . Below we will

prove the local limit theorem for statistic (2) when N, n → ∞ and 1 < C1 ≤ n/N <
ζ(τ), where ζ(τ) is the Rimann’s zeta-function. Note that judging by the results of
paper [8] the distribution of statistic (2) weakly converges to the normal law.

Suppose that in the case n/N → ζ(τ) one of the following conditions is valid:

1. τ > 6;

2. τ = 6,
√

N/| ln(1− λ)| → ∞;

3. 4 < τ < 6,
√

N(1− λ)6−τ →∞;

4. τ = 4,
√

N(1− λ)2| ln3(1− λ)| → ∞;

5. 0 < τ < 4, N(1− λ)−τ →∞.

We have the following result.

Theorem 1 Let N, n →∞ in such a way that 1 < C1 ≤ n/N < ζ(τ). Then uniformly

in the integer k such that (k −Na)/σ
√

N(1− ρ2) lies in any finite fixed interval

P

{
χ2 =

2Nk

n
+ N − n

}
=

1 + o(1)

σ
√

2πN(1− ρ2)
exp

{
− (k −Na)2

2Nσ2(1− ρ2)

}
.

To prove this theorem we will use some auxiliary statements (Lemmas 1-3).

We set ζN = ξ1 + . . . + ξN , µN =
N∑

i=1
ξi(ξi − 1)/2.

Lemma 1 The equality

P

{
χ2 =

2Nk

n
+ N − n

}
=

P{ζN = n, µN = k}
P{ζN = n} (6)

holds.



Proof. Taking into account the equality η1 + . . . + ηN = n, it is easy to see from (2)
that

P
{
χ2 = 2Nk/n + N − n

}
= P

{
N∑

i=1

ηi(ηi − 1)/2 = k

}
. (7)

It is not hard to show that the conditions of the generalized allocation scheme are valid
(see [3]). From this and from (7) we get (6). Lemma 1 is proved.

It is clear that the sums ζN and µN from (6) form the array scheme. Therefore, to
obtain the limit distribution of statistic (2) we have to prove local limit theorem for
the random vector (ζN , µN). This assertion will be proved in Lemma 3. Let

X i = (ξi, νi), i = 1, . . . , N, SN = (X1 + . . . + XN) = (ζN , µN), νi = ξi(ξi − 1)/2, (8)

AN = ESN , σ2
1 = Dξ1, QN =

(
1/(σ1

√
N) 0

0 1/(σ
√

N)

)
, Σ =

1

1− ρ2

(
1 −ρ
−ρ 1

)
.

Using the properties and the asymptotic of the Lerch function the next lemma can
be proved by the standard method of characteristic function.

Lemma 2 Under the conditions of the Theorem 1, the sequence of distributions (SN−
AN)QN weakly converges to the normal law with the density

g(x) = (2π
√

1− ρ2)−1 exp
{
−xΣxT /2

}
, x = (x1, x2) ∈ R2. (9)

Lemma 2 shows that the distribution of statistic (2) weakly converges to the normal
law. We will prove now that, in fact, local convergence takes place.

Lemma 3 Under the conditions of the Theorem 1 we have

P {SN = z} = det QN [g(z − AN)QN) + o(1)]

uniformly in z = (z1, z2) where g(x) is given in (9).

Proof. Let 〈α〉 be the distance from α ∈ R to the nearest integer. We also set

Ω(1/2, 1/4) = {d = (d1, d2) ∈ R2 : |d1|, |d2| ≤ 1/2, |d| > 1/4}; H(X, d) = E〈(X∗
, d)〉2,

where (X
∗
, d) is the scalar product of the random vector X

∗
and vector d, random

variable X
∗

is obtained from the random vector X by symmetrization. Let also

HN(d) =
N∑

i=1

H(X i, d) = NE〈(X∗
, d)〉2, HN = inf

d∈Ω(1/2,1/4)
HN(d).

For all d ∈ Ω(1/2, 1/4) it is valid that

HN(d) ≥ C11N [〈(d1 + d2)〉2 + 〈(2d1 + 3d2)〉2]. (10)

Using Lemma 2, (3),(10) and the asymptotic of Φ(λ, τ, 1), we get that the condition
1 of the theorem 4 from [4] is valid in the case 0 < C1 ≤ n/N ≤ C6 < ζ(τ) and



n/N → ζ(τ), τ > 4. This means that there is α > 0 such that HN(d) ≥ α|Q−1
N d|2,

wherefore Lemma 3 is proved by theorem 4 [4].
Let n/N → ζ(τ), 0 < τ ≤ 4. Consider the condition 2 of theorem 4 [4]. In other

words we have to show that there are α > 0, δ ∈ (0, 2],M > 0, β > 0, ν ∈ (0, 1/2) such
that HN →∞ and

B2
N(θ, u) ≥ αu2−δ|Q−1

N θ|δ, (11)

where B2
N(θ, u) = N

∑
(θ,X1)≤u

(θ, X1)P
∗, θ = (θ1, θ2), |θ| = 1, P∗ is symmetrization dis-

tribution of the random vector X1 and u ∈ [MHν
N , β|Q−1

N θ|]. It is not hard to see that
for ν > 0

B2
N(θ, u) ≥ C12N

∑

u/2≤k≤u

k3−τ ≥ C12Nu4−τ .

From this and the conditions of Lemma 3 we find that inequality (11) is valid. Lemma
3 is proved.

In [6] and [5] were demonstrated that under the conditions of the Theorem

P{ζN = n} = (σ1

√
2πN)−1(1 + o(1)).

Then from Lemma 1 and Lemma 3 it follows the assertion of the Theorem holds.
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