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Abstract

The empirical Bayesian analysis of rare rates is considered in the paper. The
condition for non-singularity of Bayesian estimates is given and the clustering
algorithm is developed, using the property of the Poisson–Gaussian model to
treat probabilities of events in populations being the same, if the variance of
probabilities is small. The approach developed is applied to the analysis of
dissimilarities of homicide and suicide data in Lithuania, 2003–2004.

1 Introduction

The Bayes method is widespread in the reliable analysis of spatial information, be-
cause it can evaluate rates of certain events not only from the current population
data, but also from data of other populations (Tsutakava et al. (1985), Quigley et al.
(2007), etc.). Empirical Bayesian estimates are shown to have substantially smaller
mean squared errors than RR estimates. Typical observables in risk mapping are num-
bers of events that obey Poisson distribution, depending on the event rate and the
observation time for each population. In this paper, numerical features of empirical
Bayesian estimation techniques for the Poisson–Gaussian model are addressed, when
prior distribution of logits is normal with the parameters estimated by the maximal
likelihood (ML) method (Tsutakava et al. (1985), Sakalauskas (2009)). The nonsingu-
larity conditions are derived in estimating the parameters of prior distribution. Thus,
since the emprical Bayes approach for the Poisson–Gaussian model distinguishes by
the property to treat probabilities of events in populations being the same, when the
numbers of events are not varying much, the clustering .algorithm is developed based
on this property. We utilize a Lithuanian mortality data set of 2003–2004 to estimate
the underlying true risks and show the applicability of the approach considered.

2 Poisson–Gaussian Model

Let us consider a set Λ = (A1, A2, . . . , AK) of K populations, where each population Aj

consists of Nj individuals. Assume that some event (e.g., death due to some disease)
can occur in the populations under observation. The aim is to estimate unknown
probabilities of eventsPj, when the numbers Yj of events in populations are observed,

j = 1, K. Since a simple estimate of the relative risk
Yj

Nj
not useful in many cases due to

great differences in population size Nj, the empirical Bayesian approach is applied. An



assumption is often corroborated (Tsutakava (1985), etc.) that the numbers of cases
Yj follows the Poisson distribution with the parametersλj = Nj · Pj, i.e.:

f(Yj, λj) = e−λj
(λj)

Yj

(Yj)!
, j = 1, . . . , K. (1)

It is of interest to consider the model, in which the logits

αj = ln
Pj

1− Pj

(2)

are normally distributed with the parametersµ, σ. Thus, the density of logit (2) is

g(αj, µ, σ) =
exp

(− (αj−µ)2

2σ2

)
√

2πσ
. (3)

Then the rates Pj are evaluated as a posteriori means for given µ, σ,

Pj =

∫∞
−∞

1
1+e−α f

(
Yj,

Nj

1+e−α

)
g(α, µ, σ)dα

Dj(µ, σ)
, (4)

where

Dj(µ, σ) =

∫ ∞

−∞
f

(
Yj,

Nj

1 + e−α

)
g(α, µ, σ)dα (5)

is the a posteriori probability of the number of event in the jth population, j = 1, K.
In the emprical Bayessian approach the unknown parameters µ, σ are estimated by

the maximal likelihood method (Tsutakava et al. (1985)). The logarithmic likelihood
function after some manipulations, is as follows:

L(µ, σ) = −
K∑

j=1

ln

( ∫ ∞

−∞
f

(
Yj,

Nj

1 + e−α

)
g(α, µ, σ)dα

)
= −

K∑
j=1

ln
(
Dj(µ, σ)

)
, (6)

which has to be minimized to get estimates for the parametersµ, σ. The likelihood
function (6) is differentiable many times with respect to the parametersµ, σ. Equating
the derivatives of the logarithmic likelihood function to zero the equations are derived,
which the ML estimates of µ and σ should satisfy (see details in Sakalauskas (2009)):

µ =
1

K

K∑
j=1

∫∞
−∞ αf

(
Yj,

Nj

1+e−α big)g(α, µ, σ)dα

Dj(µ, σ)
, (7)

σ2 =
1

K

K∑
j=1

∫∞
−∞(α− µ)2f

(
Yj,

Nj

1+e−α

)
g(α, µ, σ)dα

Dj(µ, σ)
. (8)

However, solution of these equations exists only under the nonsingularity assump-
tion of the ML estimate of σ (i.e., σ2 > 0). The solution of equations (7), (8) exists if

K∑
j=1

(Yj −Nj · P )2 >

K∑
j=1

Yj. (9)



Otherwise, the ML estimates are

µ = ln
P

1− P
, σ = 0, (10)

where

P =
K∑

j=1

Yj

/ K∑
j=1

Nj. (11)

It follows from condition (9) that the singularity occurs most often in small po-
pulations. Hence, this condition may be used to establish a population set with rare
events. It is easy to make sure that in the case of singularity (i.e., σ = 0) the numbers
of event remain constant for all the populations, that is Pj ≡ P . The corresponding
value of the ML function is

L(µ∗, 0) =
K∑

j=1

(
Nj · P − Yj · ln(Nj · P )

)
=

K∑
j=1

Yj ·
(
1− ln(Nj · P )

)
. (12)

3 Application in Clustering

The property derived of the Poisson–Gaussian model to treat populations with relative
ratios, which are close each to other as having the same probabilities of events may
be applied to map clustering, too. Let us consider a set of clusters Ξ consisting of
the populations of the set Λ = (A1, A2, . . . , AK). Note, that we treat the subsets of
contiguous populations as clusters (i.e., any population in a cluster has a common
border with some other population from this cluster), in which the condition of zero
variance derived from (9) is true:

∑
Aj∈Cδ

(Yj −Nj · P )2 − Yj ≤ 0. (13)

Let C = (C1, C2, . . . , CM) be a set clusters that covers the whole set of populations
Λ : ∩M

i=1Ci = Λ, Ci ∩ Cj = ∅, i 6= j, i, j = 1,M . We select the clustering set
so that the likelihood function (6) becomes minimal: Thus, using (12) after some
simple manipulations one may make sure that the best clustering set should provide
the minimum of the function

Π(C) =
M∑

j=1

∑
Aδ∈Cj

Yδ · ln
( ∑

Aδ∈Cj
Yδ∑

Aδ∈Cj
Nδ

)
→ min

C
. (14)

The corresponding probabilities of the events for the populations of the cluster are
the same:

Pj =

∑
δ∈Cj

Yδ∑
δ∈Cj

Nδ

. (15)

Note, that the number of possible clusters is rather large and we have to look
through huge number of clusters, when the clustering set should be established with
respect to (14). However heuristic simplifications may be applied using the next propo-
sition.



Proposition 1 Let C1 and C2 be two populations with numbers of events Y1, Y2 and
sizes N1, N2. Then

Y1 · ln
(

Y1 + Y2

N1 + N2

·N1

)
+ Y2 · ln

(
Y1 + Y2

N1 + N2

·N2

)
≤ Y1 · ln(Y1) + Y2 · ln(Y2). (16)

The proof of the proposition is simple and performed by elementary manipulations.
Thus, it follows from (16) that merging of two clusters causes the ML function to

decrease. This property can be used for a simplified search of the best clustering set.
We start from the initial clustering set, consisting of K clusters, each having only one
population. The next two clusters are merged, if condition (13) remains valid in the
merged cluster and the decrease of ML function is minimal among all the possible
merging combinations, and this procedure is repeated until termination.

4 Implementation and Discussion

The method developed was applied to analysis of data on homicide and suicide mor-
tality in Lithuania in 2003/2004 (all the events in population, for men and women).
Integration and minimization of the likelihood function was performed by means of
the mathematical software MATHCAD. We can see the decrease in variance of empir-
ical Bayesian estimates with a comparison to RR. The empirical Bayesian estimation
enables us to observe certain spatial effects in the distribution of suicide rates in pop-
ulations. The singularity of empirical Bayesian analysis with the Poisson–Gaussian
model often occurs while analyzing real data. In this paper, we derive a condition
of non-singularity for the empirical Bayesian method. The property of the empirical
Bayesian approach to treat populations with ratios, which are close each to other, is
discussed through an application of populations clustering. The approach developed
has been applied in the analysis of social and medical data, and its simplicity and
applicability is approved.
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