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Abstract

In [6] a simple, data-driven and computationally efficient procedure of (non-
parametric) testing for high-dimensional data have been introduced. The proce-
dure is based on randomization and resampling, a special sequential data par-
tition procedure, and χ2-type test statistics. However, the χ2 test has small
power when deviations from the null hypothesis are small or sparse. In this note
test statistics based on the nonparametric maximum likelihood and the empiri-
cal Bayes estimators in an auxiliary nonparametric mixture model are proposed
instead.

1 Introduction

Let X := (X(1), . . . , X(N)) be a sample of the size N of iid observations of a random
vector X having a distribution P on Rd. We are interested in testing (nonparametric)
properties of P in case the dimension d of observations is large.

Thus far, there is no generally accepted methodology for the multivariate non-
parametric hypothesis testing. Traditional approaches to multivariate nonparametric
hypothesis testing are based on empirical characteristic function [1], nonparametric dis-
tribution density estimators and smoothing [3, 5], multivariate nonparametric Monte
Carlo tests [10], and classical univariate nonparametric statistics calculated for data
projected onto the directions found via the projection pursuit [11, 7].

More advanced technique is based on Vapnik-Chervonenkis theory, the uniform
functional central limit theorem and inequalities for large deviation probabilities [8, 2].
Recently, especially in applications, the Bayes approach and Markov chain Monte Carlo
methods are widely used (see, e.g. [9] and references therein).

In [6] a simple, data-driven and computationally efficient procedure of nonparamet-
ric testing for high-dimensional data have been introduced. The procedure is based on
randomization and resampling (bootstrap), a special sequential data partition proce-
dure, and χ2-type statistics.

The goal of this note is to propose more efficient than χ2 test statistics based on the
nonparametric maximum likelihood (NML) and the empirical Bayes (EB) estimators
in an auxiliary nonparametric mixture model.



2 Simple testing procedure

Let P0 and P1 be two disjoint classes of d-dimensional distributions, P := P0
⋃P1.

Consider a nonparametric hypothesis testing problem:

H0 : P ∈ P0 versus H1 : P ∈ P1. (1)

Suppose that there exists a continuous (in some topology) mapping Ψ: P → P0 such
that P0 = {P ∈ P : Ψ(P ) = P}. One can take, for example, Ψ(P ) = argminQ∈P0

%(Q,P )
where % is a distance in P .

Let P̂ denote the empirical distribution based on the sample X and define P̂0 :=
Ψ(P̂ ). Under the null hypothesis the empirical distributions P̂ and P̂0 for large N
should be close since they both are the approximations to the same distribution P0.
Thus, any measure of discrepancy between P̂ and P̂0 can be taken as a test statistic
for (1). In [6] the following discrepancy measure T has been calculated.

Generate two independent random samples XP and X0 of size N from the distri-
butions P̂ and P̂0, respectively. Let X∗ denote the joint sample of XP and X0,

X∗ := XP || X0 = (XP (1), . . . , XP (N), X0(1), . . . , X0(N)).

Further, let S := {Sk, k = 1, . . . , K}, be a sequence of partitions of X∗ with |Sk| = k
elements produced by some binary partition algorithm. Initially S1 := {X∗}, and for
k = 2, . . . , K the next partition Sk is obtained from the previous Sk−1 by splitting some
set from Sk−1 into two disjoint subsets.

For a fixed partition Sk = {Sk
1 , . . . , Sk

k} and Q ∈ {P, 0}, define

YQ = YQ(k) := (YQ(1), . . . , YQ(k))> := (|Sk
j

⋂
XQ|, j = 1, . . . , k)>. (2)

Thus, YQ is a k-dimensional vector with jth component equal to the number of elements
of XQ in the set Sk

j (j = 1, . . . , k). Denote

η := (YP − Y0)/
√

YP + Y0; (3)

here the operations are performed coordinatewise. When the number of observations
YP (j) + Y0(j) in the each set Sk

j , j = 1, . . . , k, is large and the null hypothesis H0

holds, the distribution of the vector η is approximately standard normal. Therefore
it is natural to take χ2 statistic |η|2 as the discrepancy measure T between P̂ and P̂0

and to use it as a test statistic for (1). Actually, with the statistic T = |η|2, the null
hypothesis

Hη
0 : Eη = 0k versus Hη

1 : Eη 6= 0k (4)

is tested instead. (Here 0k stands for the null vector in Rk.)
However, χ2 test has small power when the dimension k of η is large and either

each component of the mean θ := Eη only slightly differs from 0k or only a few θ
components are nonzero.

In the next section we apply the nonparametric maximum likelihood estimator and
the nonparametric empirical Bayes method to construct a more efficient criterion to
test Hη

0 and hence H0.



3 Nonparametric maximum likelihood estimator and

empirical Bayes

Consider auxiliary problem (4) where η ∼ Normalk(θ, Ik) and θ ∈ Rk is a vector of
unknown parameters. In the (empirical) Bayes approach, the unknown parameter θ is
treated as random. Thus, we consider a nonparametric Gaussian mixture model with
a mixture distribution G

η = θ + z, θ and z are independent, (5)

z ∼ Normaln(0n, In), (6)

θi ∼ G, {θi, i = 1, . . . , n} are iid. (7)

For ν > 0, by µν(y | G) we denote the posterior ν-moment of θ1 given η1 = y

µν(y | G) :=
ϕν (y | G)

ϕ0 (y | G)
, (8)

ϕ` (y|G) :=
∫

R
u`ϕ (y − u) dG(u), ` ≥ 0. (9)

Here ϕ denotes the standard normal distribution density.
The homogeneity hypothesis (4) states that in fact there is no mixture, G is the

degenerated at 0 distribution. Since E|η|2 = kEθ2
1 + k, a criterion for testing the null

hypothesis Hη
0 can be based on an estimator of the functional

µ2 = µ2(G) :=
∫

R
u2 dG(u) = Eθ2

1. (10)

Alternatives to the direct estimator (µ̂2)χ2 := k−1|η|2 − 1 are the nonparametric maxi-
mum likelihood (NML) estimator

(µ̂2)ML := µ2

(
ĜML

)
, (11)

and the nonparametric empirical Bayes (NEB) estimator

(µ̂2)EB :=
1

k

k∑

j=1

µ2

(
ηj | ĜML

)
. (12)

Here Ĝ = ĜML is the NMLE of the mixture distribution G. For Gaussian mixtures, it
does exist and is strongly consistent (see, e.g., [4]). We consider also the NEB statistic

(
µ̂2

1

)
EB

:=
1

k

k∑

j=1

µ2
1

(
ηj | ĜML

)
. (13)

which a biased toward 0 estimator of µ2.
The performance of proposed test statistics in auxiliary problem (4) and in nonpara-

metric testing for high-dimensional data is compared by means of computer simulation.
Preliminary results demonstrate their advantages as compared to χ2 test especially
when deviations from the null hypothesis are either small or sparse.
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