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Abstract

Compositional data are multivariate observations that carry only relative
information. This means that not the absolute values but the ratios between the
variables are of interest. This is important also for an exploratory analysis of
such data. We present two basic methods for the exploratory compositional data
analysis (ECDA), namely multivariate outlier detection and the compositional
biplot. The methods are illustrated at a small data example using the R package
robCompositions.

1 Compositional data

In practice, data frequently consist of percentages or, more general, not the absolute
values but the ratios between the variables are of interest. Usually, this kind of obser-
vations is characterized with a positive constant sum constraint of variables (usually
1 or 100 in the case of proportions or percentages, respectively), however, this con-
dition is obviously not necessary. Nowadays, multivariate observations that represent
quantitative descriptions of the parts of some whole, conveying exclusively relative in-
formation, are known under the term compositional data or compositions for short.
Obviously, the D-part composition x = (x1, . . . , xD)′ and its positive real multiple cx,
c > 0, convey essentially the same information. The sample space of compositions
is a D-part simplex, a (D − 1)-dimensional subset of RD−1 that contain all D-part
compositions that sum up to a prescribed constant sum constraint. The nature of
compositions claim for a special geometry, called nowadays the Aitchison geometry
with special operations of perturbation, power transformations and the Aitchison in-
ner product with the usual Hilbert space properties [5]. The name of the geometry
comes according to John Aitchison, a British statistician that proposed the first com-
prehensive theory for statistical analysis of compositional data [1]. A special treatment
for compositions is necessary because of the different sample space. Thus, the usual
statistical methods cannot be applied directly to compositions as they are designed
for the Euclidean sample space, where the information is absolute and not relative.
As a way out, J. Aitchison proposed the family of log-ratio transformations from the



simplex to the real space, known as additive logratio (alr) and centered logratio (clr)
transformations. In fact, the new (transformed) variables represent coefficients to a
non-orthonormal basis and a generating system on the simplex (with respect to the
corresponding geometry), respectively. Nevertheless, only the latter one, defined for a
composition x as
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(
x1∏D

i=1 xi

, . . . ,
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is isometric, and thus it moves the Aitchison geometry to the standard Euclidean one.
Due to its symmetry, the clr variables are used to construct the popular compositional
biplot [2]. On the other hand, the clr transformed data are singular because they
sum up to zero. Thus, any statistical analysis based on the assumption of regularity
(like, e.g., robust methods) cannot be used. For this reason, nowadays the so called
isometric logratio (ilr) transformation [3], that is represented by coefficients to a chosen
orthonormal basis on the simplex, became popular. For one such choice we get
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, i = 1, . . . , D − 1. (2)

All the advantageous theoretical properties of the clr transformation are preserved. On
the other hand, the new variables are not easy to interpret, thus the ilr transformation
is rather used for the analysis of objects than of compositional parts, although an
interpretation for groups of compositional parts is possible [4]. For the latter purpose
also the geometric relation between clr and ilr transformations will be useful: the ilr
variables are coefficients of an orthonormal basis on the hyperplane formed by the clr
transformation. In matrix notation we can write

clr(x) = V ilr(x), (3)

where the columns of the D× (D− 1) matrix V consist of the mentioned orthonormal
vectors. Nowadays, for most statistical methods for compositional data the ilr trans-
formation seems to be convenient for the evaluation of the results. However, there
are some exceptions, like the compositional biplot (see the next section) where the clr
transformation allows easier interpretation.

2 Aspects of ECDA for compositional data: outlier

detection and compositional biplots

To start a statistical analysis of a compositional data set, one is usually interested in
patterns of the main structure of the data set (groups in the data, relations between
variables) as well as in deviations, represented by outlying observations. As the corre-
sponding statistical tools themselves can be strongly influenced by these irregularities,
instead of the classical statistical methods their robust counterparts need to be taken.
This means that for the sample z1, . . . , zn of n ilr-transformed compositions, the clas-
sical sample mean value (arithmetic mean) z = 1

n

∑n
i=1 zi and the sample covariance



matrix S = 1
n−1

∑n
i=1(zi−z)2 as estimators of the true location and covariance should be

replaced by their robust versions, being resistant to deviations from the compositional
multivariate data structure. In addition, such an estimator should follow the usual
properties of the estimates under affine transformations of the sample, what is known
as the affine invariance property. Due to both theoretical and practical advances, the
MCD (Minimum Covariance Determinant) estimator represents a good choice, being
also effectively computable [10].

Multivariate outlier detection should be the first step in each exploratory com-
positional data analysis (ECDA). Identified outliers are candidates for aberrant data
that may otherwise adversely lead to model misspecification, biased parameter estima-
tion and incorrect results. It is therefore important to identify them prior to modeling
and analysis. Outlier detection for compositional data is based on robust Mahalanobis
distances, defined for regular (D − 1)-dimensional data as

MD(zi) = [(zi − T )′C−1(zi − T )]1/2, i = 1, . . . , n,

with robust (e.g. MCD) estimators T of location and C of covariance, respectively.
Here, the estimated covariance structure is used to assign a distance to each obser-
vation indicating how far the observation is from the center of the data cloud with
respect to the covariance structure. For the computed (squared) robust Mahalanobis
distance it is usual to use a certain quantile (e.g., the quantiles 0.95 or 0.975) of the χ2

distribution with D − 1 degrees of freedom as a cut-off value for outlier identification,
see [6]; observations with larger (squared) robust Mahalanobis distance are considered
as potential outliers. However, compositional data first needs to be moved to the real
space using an suitable transformation, see [6].

The compositional biplot is nowadays one of the most widely used tools for
ECDA. It displays both samples and variables of a data matrix graphically in the
form of scores and loadings of a principal component analysis [8]. Usually, samples are
displayed as points while variables are displayed either as vectors or rays. For composi-
tional data, one would intuitively construct the biplot for ilr-transformed data, however,
due to the complex interpretation of the new variables, it is common to construct the
compositional biplot for clr-transformed compositions as proposed in [2]. The scores
represent the structure of the compositional data set in the Euclidean space, so they
can be used to see patterns and groups in the data. The loadings (rays) represent the
corresponding clr-variables. Accordingly, their interpretation is different from the usual
case. Namely, the main interest is concentrated to links (distances between vertices of
the rays); concretely, for the rays i and j (i, j = 1, . . . , D) the link approximates the
(usual) variance var(ln xi

xj
) of the logratio between the compositional parts xi and xj.

Hence, when the vertices coincide, or nearly so, then the ratio between xi and xj is
constant, or nearly so. In addition, directions of the rays signalize where observations
with dominance of the corresponding compositional part are located. Again, outliers
can substantially affect results of the underlying principal component analysis and de-
preciate the predicative value of the biplot. For this reason, again the robust version of
the biplot is needed. However, as the robust methods cannot work with singular data,
the robust scores and loadings must be computed from ilr-transformed compositions



and the result needs to be back-transformed using (3) to the clr plane, see [7] for de-
tails. Afterwards, the robust compositional biplot (with above interpretation) can be
constructed.

3 ECDA and the R-package robCompositions

The statistical software R [9] is a powerful computer environment for statistics and
data analysis. It is available for all computer platforms and can be downloaded from
http://cran.r-project.org. Nowadays, two contributed packages for compositional
data analysis are available, compositions [12] and robCompositions [11]. However,
only the latter one provides a comprehensive tool for robust statistical analysis of
compositional data, including outlier detection, principal component analysis, factor
analysis, missing values imputation, etc, together with the corresponding graphical
tools. A comprehensive overview is available using the command

help(package="robCompositions").

The above described tools of ECDA can be easily applied with robCompositions.
To make the explanation illustrative, we give practical examples using the well known
data set expenditures from [1], p. 395, which contains household expenditures on five
commodity groups of 20 single men (in former Hong Kong dollars). These variables
(compositional parts) represent housing (including fuel and light), foodstuff, alcohol
and tobacco, other goods (including clothing, footwear and durable goods) and services
(including transport and vehicles). Thus, they represent the ratios of the men’s income
spent on the mentioned expenditures. Although any constant sum constraint does not
occur here, the nature of the data is obviously compositional.

Once the package is loaded, we can load the expenditures data which are included
in the package:

> library(robCompositions)

> data(expenditures)

Next we start to search for potential outliers by computing robust Mahalanobis
distances using the function outCoDa(). Function outCoDa() internally applies a iso-
metric log-ratio transformation to the compositions to search for outliers in the real
space. The function inlcudes four function arguments, the data x, the significance level
alpha (1-quantile) and the method used (either ’standard’ or ’robust’(default)) and,
in the latter case, h as the size of the subsets for the robust covariance estimation
according to the MCD estimator. The latter three function arguments have sensible
defaults, but they can also be set by the user.



With the following command, setting the parameters alpha and method for better il-
lustration1, we apply robust outlier detection of compositional data:

> outRob <- outCoDa(expenditures, alpha=0.05, method="robust")

> outlierRob

--------------------

[1] "2 out of 20 observations are detected as outliers."

--------------------

Almost all functions in package robCompositions make use of function overloading
and the method dispatch of R. For example, the function outCoDa() returns an object
from class ’outdect’. Print, summary and plot methods are then implemented for
objects of certain classes. By typing the corresponding object (here: outlierRob), in
the R console, the print method (print.outCoDa) is selected automatically. Within
our example, the print result reports that 2 out of 20 observations are detected as
outliers.

For comparison, if outlier detection with the classical estimators is applied only one
observation is detected as outlier:

> outlierCla <- outCoDa(expenditures, alpha=0.05, method="standard")

> outlierCla

--------------------

[1] "1 out of 20 observations are detected as outliers."

--------------------

Thus, when using classical estimates one of the outliers would be masked. In addition,
also the resulting Mahalanobis distances (mahalDist) as well as a logical vector indi-
cating outliers and non-outliers (outlierIndex) can be displayed2:

> outlierRob$mahalDist

[1] 1.1914708 1.0473757 3.8197815 1.6294140 1.0226241 1.4917820

[7] 1.7143016 2.5129201 1.1268929 3.1124932 1.6244433 1.1502261

[13] 0.8202414 1.6210270 1.0015227 1.9218942 1.7339904 2.1696844

[19] 1.5773077 0.8071032

> outlierRob$outlierIndex

[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

[12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

The resulting Mahalanobis distances (ordered according to the index of the observa-
tions), together with the corresponding cut-off value, can be displayed using the plot

1Writing only outCoDa(expenditures) is equivalent, because the default values have been used
in the example.

2type names(object) into the R console to get information about the list of objects included, with
object equals to outlierRob or outlierCla in our example.



function plot.outCoDa(). R first searches for objects of class outCoDa if a function
called ’plot.outCoDa’ exists. Therefore, the users only need to know the name of the
generic function, plot(), which is simple to keep in mind. The outliers (observations
3, 10) are marked using the symbol ‘+’. The corresponding Figure 1 was obtained as
follows:

> plot(outlierRob)
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Figure 1: Graphical output by outlier detection for the expenditures data set.

A robust compositional biplot using the package robCompositions is obtained by ap-
plying the plot function plot.pcaCoDa() for (robust) principal component analysis of
compositional data. Thus, in the corresponding function pcaCoDa() that computes
scores and loadings in the clr space, the parameter method (’standard’ or ’robust’ (de-
fault)) should be set.

> PrinCompRob <- pcaCoDa(expenditures, method="robust")

> plot(PrinCompRob)

The result is displayed in Figure 2. The observations (approximated by the scores) are
nicely ordered almost on a line, where the deviating observation 3 is clearly visible. On
the other hand, the second outlier (10) is masked in the data structure. On the first
sight, a dominant influence of any compositional part is not visible, maybe with the



exception of the ray ’services’. When inspecting the data, expressed in percentages,
the variables ’foodstuff’, ’others’, and ’services’ essentially represent the ordering of the
objects as it is visible in the biplot from the scores. Accordingly, observation 3 spends
the smallest relative amount on ’foodstuff’, and observation 8 the largest amount. The
original data set is expressed in percentages by using the function

> ConstSum(expenditures)

Finally, when comparing the links, the ratios between the parts to ’footstuff’ are in
general not very stable. However, some relation seems to be more stable, e.g., between
’alcohol’ and ’other’.
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Figure 2: Robust compositional biplot for the expenditures data set.
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