
PARAMETERS ESTIMATION OF THE

WEIBULL DISTRIBUTION
ON RANDOMLY CENSORED SAMPLES

M.S. Tikhov, T.S. Borodina

Nizhny Novgorod State University
Nizhny Novgorod, RUSSIA

e-mail: tikhovm@mail.ru, zhts.260980@mail.ru

Abstract

We obtained estimation results concerning a randomly censored sample from a two-
parameter Weibull distribution. The least square method is used to derive the point
estimators of the parameters. Consistency and asymptotic normality of these estimators
is established. The best asymptotically normal estimators of the parameters, namely,
shape parameter α and scale parameter σ, is offered.

1 Introduction

The Weibull distribution (WD) is the most commonly used distribution in reliability.
Hundreds or even thousands of papers have been written on this distribution (see the
bibliography in [Rine (2009)]) and the research is ongoing. It is utmost interest to
theory-orientated statisticians because of its great number of special features and to
practitioners because of its ability to fit to data from various fields, ranging from life
data to weather data or observations made in economics and business administration,
in hydrology, in biology or in the engineering sciences.

The Weibull distribution with cumulative distribution function

F (x) = 1− exp

{
−

(
x− µ

σ

)α}
, x > µ, σ > 0, α > 0, (1)

is a member of the family of extreme value distribution.
These distributions are the limit distribution of the smallest or the greatest value,

respectively, in a sample with sample size n →∞.
Also, for the estimation of Weibull parameters, the least-squares method (LSM)

is extensively used in engineering and mathematics problems. We can get a linear
relation between the two parameters taking the logarithms of ( 1 ) as follows

z = αy − λ ( 2 )
letting µ = 0, where z = ln (− ln (1− F (x)), y = ln x, λ = −α ln σ.

Thus, in the system of y0z coordinates the equation ( 2 ) is the equation of a straight
line. Hence estimation of parameters α, λ and σ can be made an a least-square method.

For getting entire progressively censored samples of I and II types such estimations
are considered in [1] and have been investigated, basically, using the numerical meth-
ods. However the approaches to the creation are not represented and the behaviour
of estimations on randomly censored samples is not investigated in the previously



published articles, but it matters much for practical applications. In this article we
consider a problem of construction of estimations of parameters of Weibull distribution
on randomly censored samples. In transformation we use, mainly, of Kaplan-Meier
product-limit estimators as well as the method of the least squares. We show, that the
received estimations are concistency and asymptotic normal.

2 Parameters estimation

Here we consider randomly censored sample, when instead of Xi, 1 ≤ i ≤ n variables
are observed only (Z1, δ1), (Z2, δ2),. . . .., (Zn, δn) pairs, Zi = min (Xi , Ti), δi = I(Xi ≤
Ti), i = 1 , 2 , ..., where {Ti 1 ≤ i ≤ n } is censored variables , I(A) is indicator of
A event. Will be creating Weibull distribution of parameters estimators on randomly
censored data { (Zi, δi), 1 ≤ i ≤ N }.

Having in mind practical application of the model randomly censorship, we will
admit, that Xi, 1 ≤ i ≤ n and Tj, 1 ≤ j ≤ n , are the non-negative and independent
random variables, besides, each of random Tj variables does not depend on every Xi

variables, where Xi has function of distribution F (x) = 1− exp(−(x/σ)α). Censoring
T1, T2,. . . variables are assumed to be independent and identically distributed random
variables with G (x) function of distribution. In that case function of distribution of
Zi variables is equal

H(x) = P (Zi ≤ x) = 1− (1− F (x))G(x) = 1− S(x)Ḡ(x) ,
where S(x) = 1− F (x), Ḡ(x) = P (Ti > x).

It is well-known that the best estimator of survival function S(x) = 1 − F (x) on
(Zi, δi), 1 ≤ i ≤ n, is Kaplan-Meier (KM) estimator [Kaplan and Meier (1958)]

Ŝn(x) = 1− F̂n(x) =
n∏

i =1

(
1− δ[i:n]

n− i + 1

)I(Zi:n≤x)

=
∏
u≤x

(
1− dN̄(u)

Ȳ (u)

)
, (2)

where Z1:n ≤ ... ≤ Zn:n denote the order statistics pertaining to Z1, Z2, ..., Zn with
the corresponding concomitants δ [1:n], ..., δ [n:n], so that δ [i:n] = δj if Zi:n = Zj, N̄(t) =∑N

j=1 Nj(t), Nj(t) = I (Xj ≤ t , δj = 1), Ȳ (t) =
∑n

j=1 Yj(t), Yj(t) = I(Xj > t).

It is known (see [2]), that for an estimation F̂n(x) relation takes place:

P

(
sup

−∞<x<+∞
| F̂n(x)− F (x) | = O

(√
ln n

n

))
= 1 ,

Also, it is known that these estimators are asymptotic normal with mean F (x) and

asymptotic variance
S2(x)

n

x∫
0

dF (y)

S2(y) Ḡ(y)
.

2.1 The least squares procedure

In this section, we shall derive the least square estimators (LSEs) of the two parameters
α, λ. Given the observed pairs (Zi, δi), 1 ≤ i ≤ n, in a censored sample, where {Xi}, 1 ≤



i ≤ n, from the WD(α, 0, σ). Then the least square estimates of the parameters α, λ,
denoted α̂, λ̂ respectively, can be obtained by minimizing the following quantity with
respect to α, λ:

Q =
∫∞
0

(ln (− ln(1− F̂n(x))− α ln x + λ)2 dF̂n(x).

That is, to get α̂, λ̂, we have to solve the following system of linear equations with
respect to α, λ:

{ ∫∞
0

ln x · ln (− ln (1− F̂n(x)) dF̂n(x) = α
∫∞

0
ln2 x dF̂n(x)− λ

∫∞
0

ln x dF̂n(x) ,∫∞
0

ln (− ln (1− F̂N(x)) dF̂n(x) = α
∫∞
0

ln x dF̂n(x)− λ ( 5 )

From this equations we get

α̂ =
ν̂1τ̂1 − ν̂2

τ̂ 2
1 − τ̂2

, λ̂ =
ν̂1τ̂2 − ν̂2τ̂1

τ̂ 2
1 − τ̂2

,

where
ν̂1 =

∫∞
0

ln (− ln (1− F̂n(x)) dF̂n(x) ,

ν̂2 =
∫∞
0

ln x · ln (− ln (1− F̂n(x)) dF̂n(x) ,

τ̂1 =
∫∞

0
ln x dF̂n(x) , τ̂2 =

∫∞
0

ln2 x dF̂n(x) .

3 Consistency of estimators

The following result takes place.
Theorem 1. Assume that S(x) = exp(−(x/σ)α) and G(x) are continuous func-

tions. Then α̂
p→

n→∞
α , λ̂

p→
n→∞

λ .

Proof. Taking into account the following notation

ν̂1 =
∫∞
0

ln (− ln (1− F̂n(x))) dF̂n(x) =
∫∞
0

ln (− ln (1− F (x))) dF̂n(x) +

+
∫∞
0

ln (− ln (1− F̂n(x))− ln (− ln (1− F (x))) dF̂n(x) ,
and having n →∞,

sup
x≤x0

| ln (− ln(1−F̂n(x)−ln(− ln(1−F (x)) | ≤ C1 sup
x≤x0

| ln (1−F̂n(x))−ln (1−F (x)) | ≤

≤ C2 sup
x≤x0

| F̂n(x)− F (x) | , (3)

Using results of work [4], , we receive: ν̂1 − ν1
p→

n→∞
0, where

ν1 =
∫∞

0
ln(− ln(1− F (x)) dF (x) =

∫∞
0

(α ln x + λ ) dF (x) .
Similarly,

ν̂2 =
∫∞
0

ln x · ln(− ln(1− F̂n(x))) dF̂n(x)
p→

n→∞
ν2,

where
ν2 =

∫∞
0

ln x ln (− ln (1− F (x))) dF (x) =
∫∞
0

ln x ( α ln x + λ ) dF (x) ,

τ̂1 =
∫∞

0
ln x dF̂n(x)

p→
n→∞

τ1 =
∫∞
0

ln x dF (x) ,

τ̂2 =
∫∞
0

ln2 x dF̂n(x)
p→

n→∞
τ2 =

∫∞
0

ln2 x dF (x) .

From these relations follows, that α̂
p→

n→∞
ν1τ1 − ν2

τ 2
1 − τ1

= α , and λ̂
p→

n→∞
ν1τ2 − ν2τ1

τ 2
1 − τ1

= λ .



4 Asymptotic normal estimators.

As H(x) is a function of distribution of Zi = min (Xi , Ti) variables, we will admit that
H̄ = 1−H and define τH = inf {x ≥ 0 : H(x) = 1 }.

Theorem 2. Under conditions of the theorem 1
√

n(α̂ − α) and
√

n ( λ̂ − λ) be
asymptotic normal (as n →∞).

Proof. For a convergence establishment normalized differences estimations√
n(α̂ − α) and

√
n ( λ̂ − λ) to normal random variables, we will use advantage of

the results of works [4] in which it is proved, that√
n

( ∫
ϕ dF̂n −

∫ τH

0
ϕdF

)
d→

n→∞
N (0, σ2

1),

σ2
1 =

τH∫
0

ϕ2(x)

Ḡ(x)
dF (x)−

(
τH∫
0

ϕ (x) dF (x)

)2

−
τH∫
0

S(x)

1−H(x)

{
τH∫
x

ϕ )y) dF (y)

}
dG(x) ,

where ϕ: R → R measuring function provides
∫

ϕ2 dF < ∞.
Using this result we can show, for example, that

√
n (ν̂1 − ν1) and

√
n (τ̂1 − τ1)

be asymptotic normal N (0, σ2
2) and N (0, σ2

3), if as ϕ (x) function we take ϕ2(x) =
= ln(− ln(1− F (x))) and ϕ3(x) = ln x respectively.

From decomposition ν̂1τ̂1 − ν1τ1 = ν̂1 (τ̂1 − τ1) + τ1(ν̂1 − ν1) we come to conclusion,
that sequence

√
n (ν̂1τ̂1 − ν1τ1) at n →∞ will be asymptotic normal N (0, σ2

4), where
σ2

4 = σ2
2 + σ2

3 + 2σ23, σ23 = lim
N→∞

√
nE ((ν̂1 − ν1)(τ̂1 − τ1)).

Similarly,
√

n (ν̂1τ̂2 − ν1τ2),
√

n (ν̂2τ̂1 − ν2τ1) and
√

n (τ̂ 2
1 − τ 2

1 ) will be asymptotic
normal N (0, σ2

5), N (0, σ2
6) and N (0, σ2

7). Further, let
√

n (T̂1n−T1) and
√

n (T̂2n−T2)
be asymptotic normal N (0, σ2

8), N (0, σ2
9). We have :

T̂2n

T̂1n

−T2

T1

=
T̂2n − T2

T1

−T2 ( T̂1n − T1)

T 2
1

+O

(
(T̂2n − T2)(T̂1n − T1)

T 2
1

)
+O

(
T2 ( T̂1n − T1)

2

T 3
1

)
,

from which follows asymptotic normality of sequences
√

n (α̂− α) and
√

n ( λ̂− λ).
Let’s construct the best asymptotically normal estimator (b.a.n.e.).

Put θ̃
(1)
n = (α̂, σ̂) and we will define Bn(θ) and an(θ) as in Zacks (1971, 5.5.5).

Then as n →∞,

θ̃
(2)
n = θ̃

(1)
n − 1√

n
B−1

n (θ̃
(1)
n ) an(θ̃

(1)
n ) is b.a.n.e.
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