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Abstract

The paper introduces a class of simple hybrid clustering algorithms, based on
the idea of obtaining, first, a high number of ”subassemblies” or ”cells”, through
application of a k-means-type procedure, and, second, aggregating these ”sub-
assemblies” into shapes with a hierarchical merger procedure. For n objects,
characterized by vectors of values xi, i = 1, , n, we look in the first stage for
p1 cluster ”cells”, with n >> p1 >> 1, possibly p1 ∼ O(n1/2). Then, distances
between the thus formed clusters, A∗q1

, q1 = 1, , p1, are calculated according to
one of the predefined formulas. On the basis of these distances the second stage
algorithm is executed of the hierarchical merger kind. The final number of output
clusters Aq2 , i.e. p2, p1 >> p2 ≥ 1, is determined with the use of the global ob-
jective function for the clustering, developed by the author. The generic method
is primarily meant to recover the clusters of cumbersome, curvilinear, shapes,
which it does effectively and efficiently. The class of algorithms is generated by
(a) choice of a particular k-means-type algorithm for the first stage; (b) choice of
a particular distance measure d(A∗q1

, A∗q1
); (c) choice of the hierarchical merger

algorithm, coupled with the concrete form of the objective function. The overall
algorithms thus obtained differ significantly by their efficiency, numerical com-
plexity and effectiveness, as well as the nature of output clusters.
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1 The motivation and the general outline

In the efforts to enhance the effectiveness of existing clustering techniques, a two-stage
strategy, associating the advantages of two different kinds of algorithms, better fit for
the initial and the final stages of clustering, appears as quite appealing. The best known
example of such an approach seems to be ”The SPSS TwoStep Cluster Component”
[5]. Here, another two-stage approach is presented, stemming from different premises
and purposes. Thus, while effectiveness in treating (relatively) large sets of data was
definitely one of the aims, it was deemed far more important to (1) be able to possibly
easily recover clusters of awkward, curvilinear shapes and (highly) variable magnitude
characteristics, and (2) ensure flexibility with respect to the assumed ”parameters”,
guiding the solution finding process. With this respect the choice was relatively simple:
first a k-means type algorithm, over which a user can have quite ”tight” control in many
respects, and then a selection of the agglomerative clustering algorithms. Flexibility is



not only assured by the possibility of choosing among the available techniques at both
stages, but also the options both at the beginning of the procedure (starting point)
and the junction of the two stages.

A separate question is, as usual, constituted by finding of the ”right” number of
clusters. For this purpose the general global objective function, developed by the au-
thor, was used. This choice results not only from the conviction of the appropriateness
of this approach, but, primarily, from the fact important in view of the motivations
mentioned that this function lends itself to various formulations that may be fitted to
the selected agglomerative clustering algorithm.

2 The problem and the procedure

Given n objects indexed i, i ∈ 1, ..., n = I, each described by a vector xi of values xik,
k = 1, ..., m, we look for the best clustering of I into clusters Aq, q = 1, ..., p, where p
(or p(P ), where P is a partition) is the a priori not defined number of clusters. We can
postulate that variables indexed k form the space of all potential objects, EX , so that
if all xi form the set XI , then XI ⊆ EX . We refer to the essential formulation of the
clustering problem, i.e. ”find division of I into clusters such that objects in the same
cluster are possibly close, while objects in different clusters possibly distant”. For this,
we only assume that both distances d(., .) and similarities s(., .) can be appropriately
calculated (denoted dij or sij for the pairs of objects in I). Of Aq we assume only that
they sum to I, although respective algorithms may produce non-overlapping clusters,
i.e. Aq ∩ Aq = ®, q 6= q. Whenever applicable, the representative object of a cluster,
whether belonging to XI , or to EX −XI , will be denoted xq (it is assumed that there
is only one such object per cluster).

The procedure is divided into two stages: In the first stage an algorithm of the
k-means family is performed with a predefined number of clusters, p1 (users choice),
selected at a relatively ”high” level much higher than the expected ”ultimate” (”ob-
jective”?) number of clusters. Just as a hint, for a wide range of values of n one can
use p1 = n1/2. So, clusters A1

q are obtained, q = 1, ..., p1.
Once the first stage terminated, the matrix of distances between clusters A1

q is
calculated, D1. On the basis of this matrix, one of the classical progressive merger
algorithms is performed, the default choice being the single link (nearest neighbour)
procedure.

The working of the agglomerative clustering scheme is accompanied by calculation of
values of the global objective function of the author, [2, 3], leading to determination of
the sub-optimal number of clusters (see Section 4), so that, ultimately, the aggregation
process can stop before reaching p = 1.

3 The choices offered

Since the first application was ready in early 2007, see [4], the technique is still in the
experimental phase, primarily from the point of view of selection of the ”best-fitted”



 

 
 

1. Formation of p1 „subassemblies” through application of 
k-means-type technique, p1>>p2, where p2 is the envisaged 
acceptable ultimate number of clusters 

2. Aggregation of the „subassemblies” into the ultimate 
„shapes” through application of an agglomerative scheme 
(e.g. nearest neighbour) 

Calculation of distances D1 between the „subassemblies” 

Figure 1: The scheme of the two-stage algorithm

option paths along the procedure. The options offered, conform to the logic of the
hybrid procedure, are:

1. generation of the starting point for the k-means-type algorithm: notwithstanding
the obvious differences, resulting from the selection of k-means or k-medoids, it
is possible to start with a grid, spanning the EX space, or the XI set, this choice
being quite reasonable, provided the specified p1 is high enough;

2. the first stage algorithm: now the choice is between standard k-means and k-
medoids, but it is envisaged that FCM-type algorithm will be included, as well
as specialized techniques for dealing with categorical variables (like k-histograms);
use of other techniques, related to the E-M approach, is not excluded, either; there
is also a possibility of pre-specifying the number of iterations of the procedure,
given that we are interested only in the ”subassemblies”, which can be of quite
rough character;

3. the distance definition: as of now the basic choices are available, referring to
Minkowski distances and the standard ones for categorical data;

4. the number of clusters obtained from the first stage, p1: the default is n1/2, but
a user can specify virtually any number, the only check is on the maximum not
exceeding n; so, the entire procedure might boil down to k-means-like algorithm,
if the specified number is appropriately small (see next section for the use of the
objective function);

5. the way, in which distances D1 are calculated between the clusters, obtained from
the first stage; the basic choices with this respect include: (5.1) the distances
between the centroids, or medoids; (5.2) the minimum distance between any
objects from two clusters considered (a simile of the single link); (5.3) an estimate
of the minimum distance, e.g. minimum distance between the 10% of objects
farthest away in each cluster from the respective centroids or medoids; (5.4) the



maximum distance between any objects from two clusters (simile of complete
link); let us note that the choice, made at this point, is very important for the
numerical properties of the overall procedure, and also from the point of view of
algorithmic consistency (i.e. whether D1 matches the subsequent agglomerative
algorithm);

6. the second stage algorithm: as of now choice can be made only among three
basic schemes (single link, complete link and average link); there are no plans
to essentially broaden this choice, perhaps only with one or two schemes (Ward
included);

7. determination of the ultimate number of clusters: here the choice is now among
three pre-specified forms of the global objective function, which is used to deter-
mine the cluster number (see next section).

Although some comparisons were performed with the SPSS TwoStep technique,
their results are not presented here insofar as the actual comparability could not be
established in view of the wide difference in options subject to selection on both sides.
Generally, of course, time-wise the SPSS code performed much better, although in
some cases had more problems with establishing the ”right” number of clusters. In
terms of time and memory requirements, the hybrid procedure depends largely upon
the choices under 4 and 5 above. The code was not optimized, since the primary goal
was associated with shape recovery, but it must be indicated that given the possibility
of analyzing in the first stage a high number of small clusters, the number of k-means
iterations can be brought to a minimum, approximating quite effectively the single-pass
algorithms.

4 Determination of the cluster number with the

global objective function

The global objective function was introduced in the early 1980s by the author, [2,
3], with the aim of determining the cluster content along with cluster number within
one integral procedure rather than referring to an ”external” criterion, not associated
with the clustering procedure, to check whether the clustering(s) obtained (or which
of them) satisfy it.

Strictly conform to the verbal formulation of the clustering problem, quoted before
the method refers to an explicit objective function, being the function of quality of the
partitions, denoted QD

S (P ), which is composed of two parts:

QD
S (P ) = QD(P ) + QS(P ) (1)

where QD(P ) denotes the function of distance between objects assigned to various
clusters, defined over the whole space of partitions EP , P ∈ EP , while QS(P ) is the
analogously defined (in terms of interpretation, and not necessarily the very form) func-
tion of similarities among all the objects assigned to the same clusters. The function



QD
S (P ) is maximized. Its maximization allows - at least in principle - to determine

both the composition of the optimal Aq and the optimum p, number of clusters. This
unique feature is the consequence of the global nature of the general objective function
(1).

The generality of (1) is reflected through the possibility of accommodating a broad
variety of concrete formulations within the framework proposed. First, instead of
maximizing (1) we can minimize its ”dual”, in which QD(P ) is the function of distances
between the objects within the same clusters (like, for instance, in the k-means-like
techniques), while QS(P ) is the function of similarities between objects in different
clusters. Then, the way in which the functions are formulated is subject to choice,
driven by the nature of the problem at hand, and the numerical facility of resulting
computations.

The approach assumes simultaneous use of distances d(., .) and similarities s(., .)
between objects, d and s being linked by some simple and obvious functional depen-
dence, s(d) and d(s), and so, ultimately, one might deal away with the explicit use of
both notions. Still, for the sake of clarity of interpretation, we stick to the explicit use
of d and s.

Yet, according to the method associated with the function, which includes also an
algorithm of the search for the solution, the concrete formulations of the function (1),
or its ”dual”, are subject to a condition of algorithmic nature. In the framework of the
approach, namely, for algorithmic purposes, (1) is transformed into a parametric form

QD
S (P, r) = rQD(P ) + (1− r)QS(P ) (2)

r ∈ [0, 1]. With this general parametric form, the function is suboptimized through
a simple, classical progressive merger procedure. The procedure starts with r = 1,
when the parametric function is equivalent to QD(P ), whose maximization yields the
optimum partition P ∗(1) = I, meaning that each object forms a separate cluster. As
the value of r decreases, consecutive partitions P ∗(r) are formed through mergers of
clusters created at earlier stages.

In order for this procedure to lead to (sub)optimum solution (for r = 0.5), the con-
dition of opposite monotonicity with respect to aggregation/disaggregation of clusters
is applied to the components of QD

S (P ). It means that when we obtain from a given
partition P another partition through a merger of arbitrary clusters into one, then the
resulting changes in the values of QD(P ) and QS(P ) should go in the opposite direc-
tions, and with every possible aggregation these directions will for a given component
always be the same. An analogous principle is valid for the disaggregation (dissection)
of clusters. It turns out that there exists a broad class of concrete forms of QD(P ) and
QS(P ), which fulfill this condition, see [3].

By application of functions satisfying ”opposite monotonicity”, the obtained pro-
gressive merger scheme, similar to those of the Lance-Williams-Jambu (L-W-J) formula,
yields sub-optimum solutions. The scheme is generally as effective as the L-W-J ones
and suboptimizes both the contents of clusters and their number. The actual effec-
tiveness of algorithms will depend, of course, on the form of the concrete functions
QD(P ) and QS(P ). Additionally, the algorithm is equipped with a natural index r of



hierarchy, whose values, obtained during the functioning of the algorithm, may serve
to assess the robustness of the individual partitions forming hierarchical structure.

The examples of concrete forms of (1), which are, anyway, used in the present
version of the hybrid algorithm, are:

QD
S = QS + QD = Σq∈C(P )Σi,j∈Aqsij + Σq,q′∈C(P )Σi∈Aq,j∈Aq′dij (3)

QS = ΣqΣi∈Aq max
j∈Aq,j 6=i

sij and QD = ΣqΣq′>q min
i∈Aq,j∈Aq′

dij, (4)

QS = ΣqΣi∈Aq min
j∈Aq,j 6=i

sij and QD = ΣqΣq′>q max
i∈Aq,j∈Aq′

dij, (5)

where C(P ) = {1, ..., p(P )}, these three formulations corresponding in a certain man-
ner to three basic agglomerative schemes: average, single and complete link, respec-
tively. While, however, (3) provides for a strict analogue of the average link (see de
Falguerolles, 1977), (4) and (5) are just similes of the, respectively, single and com-
plete link. For this reason, in particular, in the current implementation of the hybrid
algorithm not the suboptimisation procedure, outlined before, based on (3-5), is used,
but the corresponding classical procedures, whose output is only evaluated with these
objective functions.

5 Some results

The algorithm fared very well with a number of exemplary instances, designed to test
the capacities, for which it was designed, i.e., first of all recovery of cumbersome shapes.
Fig. 2 shows the two-dimensional case, which is representative for this kind of problems
treated. Then, Fig. 3 shows a simple case, illustrating the examples meant primarily to
test the properties of the objective functions here quoted (most of these examples were
much bigger in terms of n and usually involved a three-level organization of objects).

The case of Fig. 2, when treated with the algorithm at p1 = 50 − 60, yielded
correct results for pre-defined p = 6 (while, of course, k-means nor k-medoids could
do this, chopping the ”objective” clusters into pieces). Application of the objective
function (4) implied the choice of p = 5 (maximum value), obviously suggesting that
the ring and its centre should constitute one cluster. It must be admitted, though,
that the difference in the value of the objective function between p = 5 and p = 6 is
virtually negligible (at the order of 0.1% of the entire range of values of (4) for this
example), while differences with partitions obtained for other values of p (preceding
and subsequent steps of the procedure) are much bigger.

The cases like that of Fig. 3 yielded local maxima or plateaus of the objective
function for cluster numbers, corresponding to respective ”levels of organization” of
the objects (these cases, though, were treated with complete linkage and the function
(5)).

In Fig. 4 an exemplary course of the objective function (3) is shown for quite a
complex set of test data (n > 1000, m = 6), derived from a mixture of transformed
normal populations, presented by G. Ritter [6]. In an obvious manner, the objective



 

 

Figure 2: A ”clinical” two-dimensional example treated, with n = 2277.

 

 
 

Figure 3: A simple ”two-level” example treated, with n = 106.



Figure 4: An example of the course of the objective function (3) for the test data of
G. Ritter [6]

function indicates the ”optimum” number of clusters, or a sequence of ”near-optimum”
cluster numbers, as well as those much farther away from the optimum.

6 Conclusions and future work

The hybrid scheme proved to be both effective and flexible. Flexibility is assured by
the implemented set of options, concerning both the two stages of the procedure, and,
especially, the linking element of the distance calculation. Although no match for
the SPSS TwoStep Cluster Component in terms of time, it performs relatively well
with respect to both time and memory requirements under a simplified set of options.
What is even more important from the point of view of the initial motivation is that it
identifies well shapes, both composed of ”thin lines” and of ”thick lines”. The fact of
using the global objective function for evaluation of partitions obtained from the second
stage, which can be tuned to a particular agglomerative algorithm, definitely adds to
the quality of results (few partitions can be picked, characterized by the extreme values
of the objective function, and compared with respect to other features, ”external” to
the procedure). An additional capacity is provided by the possibility of ”re-aligning”
with the objective function, proper for the first stage.

The entire procedure shall be further developed in two directions: (1) more flexi-
bility in terms of choices, mentioned in Section 3; (2) choice of best paths, formed by
these choices (and respective hints to the user). This second direction of work shall
be closely associated with thorough testing and comparison, both with the directly



”competitive” SPSS technique, the algorithms used in their classical versions, and, of
course, among various option paths of the hybrid approach.
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