Definition 4. Nontrivial small solutions of system (1) with respect to x1 are weakly
observable if every nontrivial small solution with respect to x1 has nonzero output for t > 0
and for xo being zero solution, i.e.

$2(t) =0Vt Z 0
AT >0 z(t)=0vt>T 3 = x1(t) =0, Vt>0.
z(t) =0Vt >0

Theorem 3. Nontrivial small solutions of system (1) with respect to z1 are always
observable.

Conclusion. In this paper we have investigated the problem of relative weak observability
of nontrivial small solutions of the hybrid differential-difference systems. Weak observability
of nontrivial small solution with respect to xo and z; are considered. Strong small solutions
are defined and weak observability of nontrivial strong small solutions with respect to xo is
established. Other kinds of observability of small solution of system (1) and relations between
these kinds of observability are also discussed.
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This paper investigates the Port-Controlled Hamiltonian (PCH) model of nonholonomic
dynamical systems [4]. Nonholonomic constraints on motion can be expressed in terms of
nonintegrable linear velocity relationships B(q)¢ = 0. Recently [2], this class of nonholonomic
constraints has been broadened as to encompass affine velocity relationships A(q) + B(q)¢ =
0. PCH model incorporates directly nonholonomic constraints and broadening the class of
nonholonomic constraints allows us to propose in a PCH formulation a control algorithm
for dynamical systems where nonholonomic constraints on velocities are imposed by control
objectives [1] and not by the structure of the system itself [3]. As an application, the energy
based robust control is studied of finite dimensional underactuated mechanical systems.
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ON ADAPTIVE TIME SERIES FILTERING BASED ON
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Classical optimal filters assume knowledge on a priori probability characteristics for whole
multitude of signal realizations when observation analysis is produced in accordance with open
system principle. At deficient information adaptive filters based on feedback principle are used.
They work under any initial conditions at the absence of data on environment and execute
single-step movement to an optimal solution.

The basis of adaptive filter is formed by not statistical characteristics but signal realizations
(sample functions). The main problems of existing adaptive filters are in probable divergence
of obtained estimations with real values of estimated random sequences or in low speed of
convergence.

The adaptive algorithm for time series when empirical data are only presented by current
observations on the object under study is proposed. The random function from estimating errors
that is different from mean square sum of errors is used as procedure criterion. The basis of the
algorithm of criterion minimization is stochastic optimization technique.

The features of algorithm are analyzed for discrete simple system which has important
practical applications under conditions with deficient a priori information. The algorithm is
realized on the base of RATS (ESTIMA) software. The results are compared with optimal Kalman
filter. The numerical examples are devoted to analysis of marine drifter location.

FEEDBACK STABILIZATION OF NONLINEAR CONTROL SYSTEMS
ON TIME SCALES
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Introduction. In 1983 R. Brockett [2] proved a necessary condition for feedback stabilization
of continuous-time nonlinear systems. A similar fact for discrete-time systems was shown by
W. Lin and C.I. Byrnes [3] in 1994. We extends those results to nonlinear control systems on
arbitrary unbounded time scales. A time scale is a model of time. Time may be continuous,
discrete or partly continuous and partly discrete. Differential calculus on time scales unifies
standard differential calculus and the calculus of finite differences. Control systems described by
delta differential equations on time scales generalize continuous-time and discrete-time systems.
A book by M. Bohner and A. Peterson [1] is a good introduction to the theory of dynamical
systems on time scales.
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