3. Results. On the basis of the aforecited discourses using the methods of convex and non-smooth analysis we determined following facts.

Teopema 1. Let $x_0 \in Q$ is the solution of the problem 4. If the maps $F: X \to (W, C), G: X \to (Y, K)$ are differentiable, and the map $H: X \to Z$ is continuously differentiable by Freshet in the point x_0 , then there exists the non-zero element $(\eta^*, \mu^*, \nu^*) \in C^* \times K^* \times Z^*$, satisfying the conditions:

$$\eta^* \circ F'(x_0) + \mu^* \circ G'(x_0) + \nu^* \circ H'(x_0) = 0, \langle \mu^*, G(x_0) \rangle = 0.$$
 (5)

Teopema 2. Let $x_0 \in Q$ is the solution of the problem 4. X is a Banach space, and Y, Z, W are Hylbert spaces. If the maps $F: X \to (W,C), G: X \to (Y,K), H: X \to Z$ are locally Lipschitz on X, then there exists the non-zero element $(\eta^*, \mu^*, \mu^*) \in C^* \times K^* \times Z^*$, satisfying the conditions:

$$0 \in (\eta^* \circ F + \mu^* \circ G + \nu^* \circ H)(x_0), (\mu^* \circ G)(x_0) = 0.$$
(6)

References

- Salukvadze M.E. Vector Valued Optimization Problems in Control Theory // N.Y. etc.: Academic Press, 1979.
- 2. Maisuradze V.G. On some questions of non-scalar optimization //Proceedings of the A.I.Eliashvili Institute of Control Systems of the Georgian Academy of Sciences, N 10, Tbilisi, 2006. (Rus.)
- 3. Ioffe A.D, Tikhomirov V.M. Theory of extremum problems // Nauka, Moscow, 19784.(Rus.)
- 4. Clarke F.H. Optimization and nonsmooth analisis // Wiley-Intersciense, New York, 1983.
- 5. Aubin J.-P., Ekeland I. Applied nonlinear analysis // Mir, Moscow, 1988. (Rus.)

ON THE OBSERVABILITY OF SMALL SOLUTIONS OF LINEAR DIFFERENTIAL-ALGEBRAIC SYSTEMS WITH DELAYS

V.M. Marchenko^{1,2}, Z. Zaczkiewicz¹

¹ Institute of Informatics, Bialystok Technical University, Wiejska 45A, 15-351 Bialystok, Poland pbzaczki@pb.edu.pl

² Belarusian State Technological University, Departament of Mathematics 13a, Sverdlova St., Minsk, 220050, Belarus, 220630 vmar@bstu.unibel.by

Introduction. The behaviour of a number of real physics process consists of a combination of dynamic (differential) and algebraic (functional) dependencies. These processes are described by differential-algebraic systems. In that sense these systems are hybrid systems. It should be noted that the term "hybrid systems" has been widely used in the literature in various senses [1].

The paper deals with the weak observability of small solutions of DAD systems; it is an extension of the work [2]. The small solution is a solution that goes to zero faster than any exponential function. Existence of such solutions for linear retarded systems was proved by Henry [3] and later by Kappel [4] for linear neutral type systems. Lunel [5] gave explicit characterization of the smallest possible time for which small solutions vanish. Observability of small solutions for the retarded time delay system case was first studied by Manitius [6] and for general neutral system by Salamon [7].

1. Preliminaries. Let us consider DAD system in the form

$$\dot{x}_1(t) = A_{11}x_1(t) + A_{12}x_2(t), \quad t > 0, \tag{1a}$$

$$x_2(t) = A_{21}x_1(t) + A_{22}x_2(t-h), \quad t \ge 0,$$
 (1b)

$$z(t) = B_1 x_1(t) + B_2 x_2(t). (1c)$$

Here $x_1(t) \in \mathbb{R}^{n_1}$, $x_2(t) \in \mathbb{R}^{n_2}$, $z(t) \in \mathbb{R}^m$, $t \geq 0$; $A_{11} \in \mathbb{R}^{n_1 \times n_1}$, $A_{12} \in \mathbb{R}^{n_1 \times n_2}$, $A_{21} \in \mathbb{R}^{n_2 \times n_1}$, $A_{22} \in \mathbb{R}^{n_2 \times n_2}$, $B_1 \in \mathbb{R}^{m \times n_1}$, $B_2 \in \mathbb{R}^{m \times n_2}$, are constant matrices, h is a constant delay, h > 0. We regard an absolute continuous n_1 -vector function $x_1(\cdot)$, and a piecewise continuous n_2 -vector function $x_2(\cdot)$ as the solutions of systems (1) if they satisfy the equations (1a)-(1b). System (1) should be completed with initial conditions in the form:

$$x_1(0+) = x_1(0) = x_{10}, \ x_2(\tau) = \psi(\tau), \ \tau \in [-h, 0),$$

where $\psi \in PC([-h,0],\mathbb{R}^m)$ and $PC([-h,0],\mathbb{R}^m)$ is the set of piecewise continuous m-vector functions in [-h,0].

Definition 1. We say that a solution $x_1(\cdot)$, $x_2(\cdot)$ is small, if there exists T > 0 such that $x_1(t) = 0$, $x_2(t) = 0$ for $t \ge T$. A small solution is trivial, if $x_1(t) = 0$ and $x_2(t) = 0$ for $t \ge 0$.

Similarly we define the notion of small solutions with respect to x_1 and x_2 .

2. Relative observability of small solutions.

Definition 2. Nontrivial small solutions of system (1) with respect to x_2 are weakly observable if every nontrivial small solution with respect to x_2 has nonzero output for $t \geq 0$ and x_1 is a zero solution, i.e.

$$\exists T > 0 \quad \begin{array}{l} x_1(t) = 0 \,\forall t \ge 0 \\ x_2(t) = 0 \,\forall t \ge T \\ z(t) = 0 \,\forall t \ge 0 \end{array} \right\} \Rightarrow x_2(t) = 0, \,\forall t \ge 0.$$

Theorem 1. Nontrivial small solutions of system (1) with respect to x_2 are observable if and only if the following condition holds:

$$\operatorname{rank} \begin{bmatrix} B_{2}A_{22} \\ B_{2}(A_{22})^{2} \\ \vdots \\ B_{2}(A_{22})^{n_{2}} \end{bmatrix} = \operatorname{rank} \begin{bmatrix} B_{2}A_{22} \\ B_{2}(A_{22})^{2} \\ \vdots \\ B_{2}(A_{22})^{n_{2}} \\ A_{22} \end{bmatrix}.$$

Definition 3. We say that $x_1(t)$, t > 0, $x_2(t)$, t > 0 is a strong solution of system (1) if equations (1) are satisfied for all t, t > 0 (in (1) we consider the right-hand derivative at t = 0).

Theorem 2. Nontrivial strong small solutions of system (1) with respect to x_2 are observable if and only if the following condition holds:

$$\operatorname{rank} \begin{bmatrix} A_{12}A_{22} \\ \vdots \\ A_{12}A_{22}^{n_2} \\ B_2A_{22} \\ \vdots \\ B_2A_{22}^{n_2} \end{bmatrix} = \operatorname{rank} \begin{bmatrix} A_{12}A_{22} \\ \vdots \\ A_{12}A_{22}^{n_2} \\ B_2A_{22} \\ \vdots \\ B_2A_{22}^{n_2} \\ A_{22} \end{bmatrix}.$$

Corollary 1. If nontrivial small solutions of system (1) with respect to x_2 are observable then nontrivial strong small solutions of system (1) with respect to x_2 of system (1) are also observable.

Definition 4. Nontrivial small solutions of system (1) with respect to x_1 are weakly observable if every nontrivial small solution with respect to x_1 has nonzero output for $t \geq 0$ and for x_2 being zero solution, i.e.

$$\exists T > 0 \quad \begin{aligned} x_2(t) &= 0 \,\forall t \ge 0 \\ x_1(t) &= 0 \,\forall t \ge T \\ z(t) &= 0 \,\forall t \ge 0 \end{aligned} \right\} \Rightarrow x_1(t) = 0, \,\forall t \ge 0.$$

Theorem 3. Nontrivial small solutions of system (1) with respect to x_1 are always observable.

Conclusion. In this paper we have investigated the problem of relative weak observability of nontrivial small solutions of the hybrid differential-difference systems. Weak observability of nontrivial small solution with respect to x_2 and x_1 are considered. Strong small solutions are defined and weak observability of nontrivial strong small solutions with respect to x_2 is established. Other kinds of observability of small solution of system (1) and relations between these kinds of observability are also discussed.

This work was supported by Bialystok Technical University grant S/WI/1/08.

References

- 1. Marchenko V. M. Some open problems in the theory of controllable DAD systems. // Proc. of the Belorussian State Technological University. Ser. VI. Minsk, 2006. Vyp. XIV. P. 3-6 (in Russian).
- Zaczkiewicz Z., Marchenko V. M. Observability of small solutions of linear differential-algebraic systems with delays. // Control and Cybernetics, 2006. Vol. 35. No. 4 . P. 997-1013.
- 3. Henry D. Small Solutions of Linear Autonomous Functional Differential Equations // J. Differential Equations, 1970. Vol. 8. P. 494-501.
- 4. Kappel F. Laplace transform methods and linear autonomous functional differential equations // Math.Institur, Univ. Graz, Bericht, 1976. No. 64.
- Verduyn Lunel S. M. A Sharp Version of Henry's Theorem on Small Solutions //J. Differential Equations, 1986. Vol. 62. No. 2. P. 266-274.
- Manitius A. F-controlability and observability of linear retarded systems // Appl. Math. Op-tim., 1982. Vol. 9, P. 73-95.
- Salamon D. On controllability and observability of time delay systems // IEEE Trans. Au-tomat.Contr., 1984. Vol. 29. P. 432-439.

PORT-CONTROLLED HAMILTONIAN SYSTEMS WITH NONHOLONOMIC CONSTRAINS IMPOSED BY CONTROL DESIGN OBJECTIVES

D.P. Pascault

Université de Picardie Jules Verne - Amiens, GMP, avenue des Facultés, 80 025 Amiens, France dpas@ieee.org

This paper investigates the Port-Controlled Hamiltonian (PCH) model of nonholonomic dynamical systems [4]. Nonholonomic constraints on motion can be expressed in terms of nonintegrable linear velocity relationships $B(q)\dot{q}=0$. Recently [2], this class of nonholonomic constraints has been broadened as to encompass affine velocity relationships $A(q)+B(q)\dot{q}=0$. PCH model incorporates directly nonholonomic constraints and broadening the class of nonholonomic constraints allows us to propose in a PCH formulation a control algorithm for dynamical systems where nonholonomic constraints on velocities are imposed by control objectives [1] and not by the structure of the system itself [3]. As an application, the energy based robust control is studied of finite dimensional underactuated mechanical systems.