The paper deals with the peculiarities of dynamic model of the autonomous underwater robot
[4] and implementation of programmed motion taking into account contradictory requirements
of stability and accuracy depth stabilization or equidistant curve with regard to relief. It also
gives examples of practical realization of the offered solutions in the structure and algorithms of
motion control of certain autonomous underwater vehicles-robots.
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We solve the problem of global stabilization in finite time by means of a continuous feedback
law for a general class of tridiagonal multi-input and multi-output systems with singular input-
output links. We combine the controllability function method (which works locally around the
equilibrium) with a modification of global construction developed in previous works for the
singular case.
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Introduction. Extremality, stationarity, and regularity properties of collections of sets in a
normed linear space are characterized in terms of certain primal and dual constants.

1. Primal Constants. Consider a collection of sets Q, Qo, ..., €, (n > 1) in a normed space
X with 2° € N*,€Q;. The following nonnegative (not necessarily finite) constants can be used
for characterizing the mutual arrangement of the sets near z° [1, 2, 4, 3, 5]
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Definition 1. The collection of sets Qq, Qa, ..., Qy is

1. extremal at x° if 0,[Q,...,Q](x°) =0 for all p > 0.

2. locally extremal at x° if 6,[Q,...,Q](2°) =0 for some p > 0.
3. stationary at x° if 0[Q,...,Q,](2°) = 0.

4. weakly stationary at z° if 0], ..., Q] (x°) = 0.

5. reqular at x° if [, ..., Q,](2°) > 0.

6. strongly reqular at z° if 0], ..., Q] (z°) > 0.

Items (i), (ii) of the above definition recapture the original definitions from [6|. The following
implications are straightforward: (i) = (ii) = (iii) = (iv), (vi) = (v).

2. Metric Constant. Strong regularity (or weak stationarity) of the collection of sets can be
also characterized using the next “metric” constant [3, 5|:

I[Q, ..., 2] (z°) = limsup [d(m, m(QZ —x;)) /lrga<x d(z + xZ,QZ)] .
x—x° i=1 Stsn o

z;—0

Here d(-,-) is the point-to-set distance in X and [-/-]o denotes the “extended"division operation.
It differs from the usual one in the following additional rule: [0/0], = 0.

Theorem 1 ([3]) [, ..., Q,](z°) = 1/0]Q4, ..., Q,](z°).

3. Dual Constants. In this section the sets 21,9, ...,€,, are assumed closed.
Recall that the Fréchet normal cone to a set  at a point x° € () is defined as

N(z°|Q) =<a" € X*: limsupwgo .
0. llz—a

r—x°

Here X* is the space (topologically) dual to X, (-,-) is the bilinear form defining duality between

X and X* and z 2 2° means that 2 — 2° while 2 € Q.
Using Fréchet normal cones one can define a dual constant:
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Here we use another “extended"division operation [, -|oc with the rule [0/0]s = oo.

Theorem 2 ([4]) 0[Q, ..., Q2.](x°) < 7[Q4,...,Q.)(x°). If X is Asplund then

. 011, ..., Q,](z°)
N J(z) < [1—0[Q, ..., 2](x°)]+

Corollary 1. Let X be Asplund. The collection of sets 21, Qa, ..., Qy is strongly reqular
(weakly stationary) at x° if and only if n[Q,...,Q,](z°) >0 (=0).
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The weak stationarity part of the last statement is related to fundamental concepts of
variational analysis. It recaptures in the Asplund space setting the Extended Extremal Principle
and strengthens the Fxtremal Principle.

Extremal Principle ([6, 7]) If the collection of sets Qq, Qo, ..., Qy, is locally extremal at z°
then n[Q,...,Q,](z°) = 0.

Extended Extremal Principle ([2]) The collection of sets Qq, Qa, ..., Qy, is weakly stationary
at x° if and only if N[y, ..., Q](z°) = 0.

Taking into account the extremal characterizations of Asplund spaces in [7| one can formulate
the following theorem.

Theorem 3 ([3]) The following assertions are equivalent:

1. X is an Asplund space;
2. The Ezxtremal principle is valid in X;
3. The Extended extremal principle is valid in X.
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Introduction. The paper is dedicated to the problems of non-scalar optimization, i.e. to the
problems of vector optimization, in which a criteria space is not necessarily finite-dimensional.
There are two motives of the consideration of such problems: the classical concepts of the solution
of the vector optimization problem don’t allow the direct generalization in case of infinite-
dimensional spaces [1]; there is a connection between the theory of mathematical games and
the non-scalar optimization.

1. Basic concepts and facts. The reflexive and transitive relation 3= is a linear partial order
in the linear space W, if a =b=a+c = b+ ¢, ta = tbVa,b,c € W,t > 0. For the linear partial
order 3= the set C' = {a € Wla > 0} is a convex cone with the vertex 0 € 20. Conversely, the
convex cone C' C 20 with the zero vertex in the linear space 20 induces the linear order = by
the condition a = b < a — b € 2. The partially ordered linear space 20 with the convex cone
C C 25,0 € C. Below, without a special stipulation, the cone C C 20U is considered sharp, i.e.
cn(-C)={0}.
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