The paper deals with the peculiarities of dynamic model of the autonomous underwater robot
[4] and implementation of programmed motion taking into account contradictory requirements
of stability and accuracy depth stabilization or equidistant curve with regard to relief. It also
gives examples of practical realization of the offered solutions in the structure and algorithms of
motion control of certain autonomous underwater vehicles-robots.
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We solve the problem of global stabilization in finite time by means of a continuous feedback
law for a general class of tridiagonal multi-input and multi-output systems with singular input-
output links. We combine the controllability function method (which works locally around the
equilibrium) with a modification of global construction developed in previous works for the
singular case.
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Introduction. Extremality, stationarity, and regularity properties of collections of sets in a
normed linear space are characterized in terms of certain primal and dual constants.

1. Primal Constants. Consider a collection of sets Q, Qo, ..., €, (n > 1) in a normed space
X with 2° € N*,€Q;. The following nonnegative (not necessarily finite) constants can be used
for characterizing the mutual arrangement of the sets near z° [1, 2, 4, 3, 5]
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