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1. Problem formulation. We consider the case of a space periodic flow in a 3D cubic box 2
of size L under imposed homogeneous and steady magnetic field B = By - e,. In the frame of
the low-Rm approximation, the governing equations can be reduced to a single one involving the
velocity u and pressure p only (see [2]|). Using a reference length L, we shall write it in a non
dimensional form as

9 2 2g—20%u
au(x,t) + (u-V)u+Vp=Vu- Ha*V 52 + Gf(x,1), O
V-u=0,

ag
pv
is the Grashof number, u(x,t) is the velocity-vector of the flow, f(x,t) is the external forcing,
x = (x,y, z) is the spatial variable, ¢ is time, p is the density, p is the pressure, v is the viscosity, o
is the electrical conductivity, By is the imposed magnetic field. Additionally, we will use another
non-dimensional parameter Reynolds number Re = @ based on integral length scale Ly
(see [3]) and reference velocity U. The addition of periodic boundary conditions and zero initial
condition u(x,0) = 0 completely determine the problem.

We present numerical study using pseudo-spectral method based on a decomposition of the
velocity u over the orthonormal basis of the eigenfunctions vy of the linear operator Dp, =
V2 — HaQV_Qaa—;, which corresponds to the linear part of the problem (1). These eigenfunctions
are in a subset of the Fourier space used in the standard DNS schemes (see [3]). The aim is to
show that properly chosen subset of least dissipative modes reduces the costs of the numerical
simulations without loosing precision. It makes sense to consider eigenvalues Ay which represents

the rate of dissipation of mode k

3/2
where following notations are used Ha = LBy is the Hartmann number and G = L,j—;f||f I

k?2
Ne = Ny = — (2 + K2+ k2) — Ha® 52— (2)
(ka Ky k) z TRy k2 + k2 + k2
Since A\ < 0, A\x can be arranged by growing dissipation so the spectral decomposition of u
can be written as u = > €\ V., Where A2 defines the maximum resolution required to
[Asc [ < Amax]

resolve the flow completely. This yields a natural spectral parameter \x that already incorporates
anisotropy. In the case of Ha = 0, |\c|'/? reduces to ||k|| which is the usual spectral parameter
in non-MHD isotropic turbulence. As mentioned by [1], the set of least dissipative eigenmodes
of Dy, required to describe the flow exhibits the rate of anisotropy expected for such flow from
previous heuristic consideration. In short, one could see Ak as an anisotropic generalization of
the usual k-sequence.
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Fig. 1: Logarithmic energy distribution in the (k, , k,)-plane.

2. Numerical results. For the simulations we set the following constant values L = 0.1 m,
v=34-10""m?/s, p = 6.4-10% kg/m?>, 0 = 3.46-10° Q" 'm~!, By = 0.02 T. Several simulations
were done with different numerical resolutions n, x n, x n, and Grashof numbers G. Figurel
shows the time-averaged energy distributions of the 3D anisotropic MHD flow in the (k,k.)-
plane (here k; = ,/k2 + k;) for fixed G = 27193 (Re = 92). The first picture corresponds to the
Re = 92 and highest resolution 128 x 128 x 128 which is necessary to resolve the flow according to
the Kolmogorov length scale kpax = 1.5Re3/* ~ 45 (we will use solid line to indicate this case).
The second picture is done with the same 1283 resolution but all the modes vy which correspond
to the |\|'/2 > 68 are set to be zero (dotted line). And the last one shows the energy of the flow
resolved with 643 and cutoff for [\c|'/? < 32 (dashed line). Thus, the last run uses as much as
8 times less modes as the first classical run. One can see that A-spectra E(\) obtained in these
three runs are very close (see Figure2) and only the case with lowest resolution 32% and strongest
cut off [A™2%|1/2 = 16 yields the wrong solution (dashed-doted line). Moreover, from the second
picture on Figure2 no clear "smallest scale” appears in the traditional k—spectra, so we can not
say either this flow resolved or not. It can be already concluded now, that Kolmogorov scaling
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Fig. 2: Left: energy spectra in A-shells, Right energy spectra in k-shells.

laws are very often pessimistic and much higher then necessary. The above presented A-approach
can be considered as more realistic for the number of modes required to resolve MHD turbulence
completely. The presented cut off of the type |[Ax| < |[A\™**| achieves a good enough precision,
even though the Kolmogorov scale is not resolved or uncertain.
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