References

- Burton T.A. Uniform Asymptotic Stability in Functional Differential Equations // Proceedings of the American Mathematical Society. 1978. V. 68. No. 2. P. 195-199.
- Bernfeld S., Corduneanu C., Ignatyev A.O. On the stability of invariant sets of functional differential equations // Nonlinear Analysis. 2003. V. 55. No. 6. P. 641-656.
- 3. Krasovskii N.N. Stability of Motion. Stanford University Press. 1963.

DIRECT NUMERICAL SIMULATION OF MAGNETOHYDRODYNAMIC TURBULENCE BASED ON THE LEAST DISSIPATIVE MODES

V. Dymkou, A. Pothérat

Applied Mathematics Research Centre, Coventry University Coventry, CV1 5FB, United Kingdom {vitali.dymkou,alban.potherat}@coventry.ac.uk

1. Problem formulation. We consider the case of a space periodic flow in a 3D cubic box Ω of size L under imposed homogeneous and steady magnetic field $\mathbf{B} = B_0 \cdot \mathbf{e}_z$. In the frame of the low-Rm approximation, the governing equations can be reduced to a single one involving the velocity **u** and pressure p only (see [2]). Using a reference length L_{ref} we shall write it in a non dimensional form as

$$\frac{\partial}{\partial t}\mathbf{u}(\mathbf{x},t) + (\mathbf{u}\cdot\nabla)\mathbf{u} + \nabla p = \nabla^2\mathbf{u} - Ha^2\nabla^{-2}\frac{\partial^2\mathbf{u}}{\partial z^2} + G\mathbf{f}(\mathbf{x},t),$$

$$\nabla\cdot\mathbf{u} = 0,$$
(1)

where following notations are used $\operatorname{Ha} = L_{\operatorname{ref}} B_0 \sqrt{\frac{\sigma}{\rho\nu}}$ is the Hartmann number and $G = \frac{L_{\operatorname{ref}}^{3/2}}{\nu^2} ||\mathbf{f}||$ is the Grashof number, $\mathbf{u}(\mathbf{x}, t)$ is the velocity-vector of the flow, $\mathbf{f}(\mathbf{x}, t)$ is the external forcing, $\mathbf{x} = (x, y, x)$ is the spatial variable, t is time, ρ is the density, p is the pressure, ν is the viscosity, σ is the electrical conductivity, B_0 is the imposed magnetic field. Additionally, we will use another non-dimensional parameter Reynolds number $Re = \frac{UL_{\operatorname{int}}}{\nu}$ based on integral length scale L_{int} (see [3]) and reference velocity U. The addition of periodic boundary conditions and zero initial condition $\mathbf{u}(\mathbf{x}, 0) = 0$ completely determine the problem.

We present numerical study using pseudo-spectral method based on a decomposition of the velocity **u** over the orthonormal basis of the eigenfunctions $\mathbf{v}_{\mathbf{k}}$ of the linear operator $D_{Ha} = \nabla^2 - \text{Ha}^2 \nabla^{-2} \frac{\partial^2}{\partial z^2}$, which corresponds to the linear part of the problem (1). These eigenfunctions are in a subset of the Fourier space used in the standard DNS schemes (see [3]). The aim is to show that properly chosen subset of least dissipative modes reduces the costs of the numerical simulations without loosing precision. It makes sense to consider eigenvalues $\lambda_{\mathbf{k}}$ which represents the rate of dissipation of mode \mathbf{k}

$$\lambda_{\mathbf{k}} = \lambda_{(k_x, k_y, k_z)} = -(k_x^2 + k_y^2 + k_z^2) - Ha^2 \frac{k_z^2}{k_x^2 + k_y^2 + k_z^2}.$$
(2)

Since $\lambda_{\mathbf{k}} < 0$, $\lambda_{\mathbf{k}}$ can be arranged by growing dissipation so the spectral decomposition of **u** can be written as $\mathbf{u} = \sum_{|\lambda_{\mathbf{k}}| < |\lambda^{\max}|} c_{\lambda_{\mathbf{k}}} \mathbf{v}_{\lambda_{\mathbf{k}}}$, where λ^{\max} defines the maximum resolution required to resolve the flow completely. This yields a natural spectral parameter $\lambda_{\mathbf{k}}$ that already incorporates

resolve the flow completely. This yields a natural spectral parameter $\lambda_{\mathbf{k}}$ that already incorporates anisotropy. In the case of Ha = 0, $|\lambda_{\mathbf{k}}|^{1/2}$ reduces to $||\mathbf{k}||$ which is the usual spectral parameter in non-MHD isotropic turbulence. As mentioned by [1], the set of least dissipative eigenmodes of D_{Ha} required to describe the flow exhibits the rate of anisotropy expected for such flow from previous heuristic consideration. In short, one could see $\lambda_{\mathbf{k}}$ as an anisotropic generalization of the usual **k**-sequence.

Fig. 1: Logarithmic energy distribution in the (k_{\perp}, k_z) -plane.

2. Numerical results. For the simulations we set the following constant values L = 0.1 m, $\nu = 3.4 \cdot 10^{-7} \text{ m}^2/\text{s}$, $\rho = 6.4 \cdot 10^3 \text{ kg/m}^3$, $\sigma = 3.46 \cdot 10^6 \Omega^{-1} \text{m}^{-1}$, $B_0 = 0.02$ T. Several simulations were done with different numerical resolutions $n_x \times n_y \times n_z$ and Grashof numbers G. Figure 1 shows the time-averaged energy distributions of the 3D anisotropic MHD flow in the (k_{\perp}, k_z) -plane (here $k_{\perp} = \sqrt{k_x^2 + k_y^2}$) for fixed G = 27193 (Re = 92). The first picture corresponds to the Re = 92 and highest resolution $128 \times 128 \times 128$ which is necessary to resolve the flow according to the Kolmogorov length scale $k_{\max} = 1.5Re^{3/4} \approx 45$ (we will use solid line to indicate this case). The second picture is done with the same 128^3 resolution but all the modes $\mathbf{v_k}$ which correspond to the $|\lambda_{\mathbf{k}}|^{1/2} > 68$ are set to be zero (dotted line). And the last one shows the energy of the flow resolved with 64^3 and cutoff for $|\lambda_{\mathbf{k}}|^{1/2} \leq 32$ (dashed line). Thus, the last run uses as much as 8 times less modes as the first classical run. One can see that λ -spectra $E(\lambda)$ obtained in these three runs are very close (see Figure2) and only the case with lowest resolution 32^3 and strongest cut off $|\lambda^{\max}|^{1/2} = 16$ yields the wrong solution (dashed-doted line). Moreover, from the second picture on Figure2 no clear "smallest scale" appears in the traditional \mathbf{k} -spectra, so we can not say either this flow resolved or not. It can be already concluded now, that Kolmogorov scaling

Fig. 2: Left: energy spectra in λ -shells, Right energy spectra in **k**-shells.

laws are very often pessimistic and much higher then necessary. The above presented λ -approach can be considered as more realistic for the number of modes required to resolve MHD turbulence completely. The presented cut off of the type $|\lambda_{\mathbf{k}}| < |\lambda^{\max}|$ achieves a good enough precision, even though the Kolmogorov scale is not resolved or uncertain.

References

- Potherat A., Alboussiere T. Small scales and anisotropy in low-Rm magnetohydrodynamic turbulence // Phys. Fluids, 15, P. 3170-3180, 2003.
- 2. Roberts P.H. Introduction to Magnetohydrodynamics. Longsmans, London, 1967.
- Zikanov O., Davidson P., Knaepen B. Anisotropy of MHD turbulence at low magnetic Reynolds number // American Physical Society, 58th Annual Meeting of the Division of Fluid Dynamics, 2005.