References

- Chiricalov V.A. Matrix impulsive periodic differential equation of the second order // Proc. of XII International Scientific Conference for Differential equations(Erugin's readings-2007). Minsk, Institute of Mathematics of NAS of Belarus, 2007. P. 191-198.
- Daletskij Yu.L., Krein M.G. Stability of solutions of differential equations in Banach space. Moscow, Nauka, 1970

ON THE STABILITY OF INVARIANT SETS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH DELAY

C. Corduneanu¹, A.O. Ignaty ev^2

¹ University of Texas at Arlington, Arlington, TX 76019-0408, USA ccordun@uta.edu

² Institute for Applied Mathematics and Mechanics, R. Luxemburg Street, 74, Donetsk-83114, Ukraine aoignat@mail.ru

Introduction. Let $t \in \mathbb{R}_+ = [0,\infty)$, $x = (x^1,\ldots,x^n) \in \mathbb{R}^n, |x| = \sqrt{\sum_{i=1}^n (x^i)^2}, y = (y^1,\ldots,y^m), |y| = \sqrt{\sum_{s=1}^m (y^s)^2}, z = (x,y) = (z^1,\ldots,z^{n+m}) \in \mathbb{R}^{n+m}, |z| = \sqrt{|x|^2 + |y|^2}.$ For a given h > 0, C^n and C^m denote the spaces of continuous functions mapping [-h,0] into \mathbb{R}^n and \mathbb{R}^m respectively. Let $\varphi = (\varphi^1,\varphi^2,\ldots,\varphi^{n+m}) = (\psi,\lambda)$, where $\psi = (\psi^1,\ldots,\psi^n) \in C^n, \lambda = (\lambda^1,\ldots,\lambda^m) \in C^m, C = C^n \times C^m$. Denote

$$\begin{aligned} \|\psi\| &= \sup(|\psi^{i}(\theta)|, \text{ under } -h \leq \theta \leq 0, \ 1 \leq i \leq n), \\ \|\lambda\| &= \sup(|\lambda^{j}(\theta)|, \text{ under } -h \leq \theta \leq 0, \ 1 \leq j \leq m), \\ \|\varphi\| &= \max(\|\psi\|, \|\lambda\|), \\ C_{H} &= \{\varphi \in C : \|\psi\| \leq H, \ \|\lambda\| < +\infty\}. \end{aligned}$$

If z is a continuous function of u defined on $-h \leq u < A, A > 0$, and if t is a fixed number satisfying $0 \leq t < A$, then z_t denotes the restriction of z to the segment [t - h, t] so that $z_t = (z_t^1, \ldots, z_t^{n+m}) = (x_t, y_t)$ is an element of C defined by $z_t(\theta) = z(t + \theta)$ for $-h \leq \theta \leq 0$.

Consider a system of functional differential equations

$$\frac{dz(t)}{dt} = Z(t, z_t). \tag{1}$$

In this system dz/dt denotes the right-hand derivative of z at t, t is time, and $Z(t,\varphi) = (X(t,\varphi), Y(t,\varphi)) \in \mathbb{R}^{n+m}$ is defined on $\mathbb{R}_+ \times C_{H_1}$; $X \in \mathbb{R}^n, Y \in \mathbb{R}^m$.

According to T.Burton [1], we denote by $z(t_0, \varphi) = (x(t_0, \varphi), y(t_0, \varphi))$ a solution of (1) with initial condition $\varphi \in C_{H_1}$, where $z_{t_0}(t_0, \varphi) = \varphi$ and we denote by $z(t, t_0, \varphi)$ the value of $z(t_0, \varphi)$ at t and $z_t(t_0, \varphi) = z(t + \theta, t_0, \varphi), -h \le \theta \le 0$.

It is assumed that the vector-valued functional $Z(t, \varphi)$ is continuous on $\mathbb{R}_+ \times C_{H_1}$ so that a solution will exist for each continuous initial condition. We suppose that each solution $z(t_0, \varphi)$ is defined for those $t \ge t_0$, such that $||x_t(t_0, \varphi)|| < H_1$.

Let $V(t,\varphi)$ be a continuous functional defined for $t \ge 0, \varphi \in C_{H_1}$.

Consider the set

$$M := \{ \varphi \in C : \|\psi\| = 0, \|\lambda\| < \infty \}.$$
(2)

The necessary and sufficient conditions of the uniform asymptotic stability of the invariant set M of system (1) were obtained in [2]. In that paper, the method of Lyapunov functionals, founded

by [3], was used. It was proved there that for uniform asymptotic stability of M it is necessary and sufficient the existence of continuous functional $V : \mathbb{R}_+ \times C_H \to \mathbb{R}$ $(H < H_1)$ such that

$$a(\|x_t\|) \le V(t, z_t) \le b(\|x_t\|), \quad a, b \in \mathcal{K},$$
(3)

$$\frac{dV}{dt} \le -c(\|x_t\|), \quad c \in \mathcal{K}$$
(4)

along solutions of system (1). Here \mathcal{K} denotes the class of Hahn's functions, that is $r \in \mathcal{K}$ if $r : \mathbb{R}_+ \to \mathbb{R}_+$ is a continuous monotonically increasing function such that r(0) = 0.

The purpose of this paper is twofold. First we consider the system

$$\frac{dz(t)}{dt} = Z(t, z_t) + R(t, z_t)$$
(5)

for which M is also the invariant set. In section 1 the restrictions on R are stated under which the uniform asymptotic stability of M of system (1) implies the uniform asymptotic stability of invariant set (2) of system (5). In section 2 we also consider the particular case of system (1) when Z is an almost periodic function of t. It is shown that for asymptotic stability of M of system (1) it is sufficiently the existence of a functional V which has more weak properties than (3) and (4).

1. On the Uniform Asymptotic Stability of M to Perturbed Systems.

Definition 1. We shall say that a functional $Q : \mathbb{R}_+ \times C_H \to \mathbb{R}^{n+m}$ satisfies condition (B_1) if there is a $\beta > 0$ ($\beta < H$) such that for any $\xi \in (0, \beta)$ there exist a $\tau_{\xi} \ge 0$ and a function $g_{\xi}(t)$, continuous on $[\tau_{\xi}, \infty)$ such that $|Q_i(t, \varphi)| \le g_{\xi}(t)$ (i = 1, ..., n) for $\varphi \in C_{\beta} \setminus C_{\xi}, t \in [\tau_{\xi}, \infty)$, and

$$\lim_{t \to \infty} G_{\xi}(t) = 0$$

where $G_{\xi}(t) = \int_{t}^{t+1} g_{\xi}(s) ds$.

Theorem 1. Let M be a uniformly asymptotic stable set of system (1), and its domain of attraction contains C_H . If $R(t, \varphi)$ satisfies condition (B_1) , then M is also a uniformly asymptotic stable set of system (5), and there exists a positive η ($\eta < H$) such that the domain of attraction of M of system (5) contains C_{η} .

2. On the Stability of a Positive Invariant Set in Almost Periodic Systems.

Definition 2. The solution $z(t_0, \varphi)$ of system (1) is called x-eventually nonzero if for every $t > t_0$ there exists $t_* > t$ such that $|x(t_*, t_0, \varphi)| \neq 0$.

Theorem 2. Let functional differential equations (1) satisfy the above conditions; let any solution $z(t_0, \varphi)$ such that $z_t(t_0, \varphi) \in C_H$ be y-bounded, and there exists a continuous functional $V(t, \varphi) : \mathbb{R} \times C_H \to \mathbb{R}$, which is locally Lipschitz in φ , such that the following conditions are fulfilled on the set $\mathbb{R} \times C_H$:

- $V(t,0,\lambda) \equiv 0$, $a(|\psi(0)|) \leq V(t,\varphi) \leq b(||\psi||)$, where $a, b \in \mathcal{K}$;
- $V(t,\varphi)$ is almost periodic in t for each fixed $\varphi \in C_{A,B}$ $(0 < A \le H, B > 0)$;
- $dV/dt \leq 0$, $dV/dt \neq 0$ on each x-eventually nonzero solution of system (1).

Then M is asymptotically stable set of system (1).

References

- Burton T.A. Uniform Asymptotic Stability in Functional Differential Equations // Proceedings of the American Mathematical Society. 1978. V. 68. No. 2. P. 195-199.
- Bernfeld S., Corduneanu C., Ignatyev A.O. On the stability of invariant sets of functional differential equations // Nonlinear Analysis. 2003. V. 55. No. 6. P. 641-656.
- 3. Krasovskii N.N. Stability of Motion. Stanford University Press. 1963.

DIRECT NUMERICAL SIMULATION OF MAGNETOHYDRODYNAMIC TURBULENCE BASED ON THE LEAST DISSIPATIVE MODES

V. Dymkou, A. Pothérat

Applied Mathematics Research Centre, Coventry University Coventry, CV1 5FB, United Kingdom {vitali.dymkou,alban.potherat}@coventry.ac.uk

1. Problem formulation. We consider the case of a space periodic flow in a 3D cubic box Ω of size L under imposed homogeneous and steady magnetic field $\mathbf{B} = B_0 \cdot \mathbf{e}_z$. In the frame of the low-Rm approximation, the governing equations can be reduced to a single one involving the velocity **u** and pressure p only (see [2]). Using a reference length L_{ref} we shall write it in a non dimensional form as

$$\frac{\partial}{\partial t}\mathbf{u}(\mathbf{x},t) + (\mathbf{u}\cdot\nabla)\mathbf{u} + \nabla p = \nabla^2\mathbf{u} - Ha^2\nabla^{-2}\frac{\partial^2\mathbf{u}}{\partial z^2} + G\mathbf{f}(\mathbf{x},t),$$

$$\nabla\cdot\mathbf{u} = 0,$$
(1)

where following notations are used $\operatorname{Ha} = L_{\operatorname{ref}} B_0 \sqrt{\frac{\sigma}{\rho\nu}}$ is the Hartmann number and $G = \frac{L_{\operatorname{ref}}^{3/2}}{\nu^2} ||\mathbf{f}||$ is the Grashof number, $\mathbf{u}(\mathbf{x}, t)$ is the velocity-vector of the flow, $\mathbf{f}(\mathbf{x}, t)$ is the external forcing, $\mathbf{x} = (x, y, x)$ is the spatial variable, t is time, ρ is the density, p is the pressure, ν is the viscosity, σ is the electrical conductivity, B_0 is the imposed magnetic field. Additionally, we will use another non-dimensional parameter Reynolds number $Re = \frac{UL_{\operatorname{int}}}{\nu}$ based on integral length scale L_{int} (see [3]) and reference velocity U. The addition of periodic boundary conditions and zero initial condition $\mathbf{u}(\mathbf{x}, 0) = 0$ completely determine the problem.

We present numerical study using pseudo-spectral method based on a decomposition of the velocity **u** over the orthonormal basis of the eigenfunctions $\mathbf{v}_{\mathbf{k}}$ of the linear operator $D_{Ha} = \nabla^2 - \text{Ha}^2 \nabla^{-2} \frac{\partial^2}{\partial z^2}$, which corresponds to the linear part of the problem (1). These eigenfunctions are in a subset of the Fourier space used in the standard DNS schemes (see [3]). The aim is to show that properly chosen subset of least dissipative modes reduces the costs of the numerical simulations without loosing precision. It makes sense to consider eigenvalues $\lambda_{\mathbf{k}}$ which represents the rate of dissipation of mode \mathbf{k}

$$\lambda_{\mathbf{k}} = \lambda_{(k_x, k_y, k_z)} = -(k_x^2 + k_y^2 + k_z^2) - Ha^2 \frac{k_z^2}{k_x^2 + k_y^2 + k_z^2}.$$
(2)

Since $\lambda_{\mathbf{k}} < 0$, $\lambda_{\mathbf{k}}$ can be arranged by growing dissipation so the spectral decomposition of **u** can be written as $\mathbf{u} = \sum_{|\lambda_{\mathbf{k}}| < |\lambda^{\max}|} c_{\lambda_{\mathbf{k}}} \mathbf{v}_{\lambda_{\mathbf{k}}}$, where λ^{\max} defines the maximum resolution required to resolve the flow completely. This yields a natural spectral parameter $\lambda_{\mathbf{k}}$ that already incorporates

resolve the flow completely. This yields a natural spectral parameter $\lambda_{\mathbf{k}}$ that already incorporates anisotropy. In the case of Ha = 0, $|\lambda_{\mathbf{k}}|^{1/2}$ reduces to $||\mathbf{k}||$ which is the usual spectral parameter in non-MHD isotropic turbulence. As mentioned by [1], the set of least dissipative eigenmodes of D_{Ha} required to describe the flow exhibits the rate of anisotropy expected for such flow from previous heuristic consideration. In short, one could see $\lambda_{\mathbf{k}}$ as an anisotropic generalization of the usual **k**-sequence.