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Abstract

Consider an AR(1) process with i.i.d. innovations. We assume that the inno-
vations have the finite fourth moment and density satisfying the integral Lipschitz
condition. For such a process the asymptotic expansion of order 1 in the central
limit theorem is obtained.

1 Asymptotic expansion
The subject of interest in the following is the AR(1) process

Xt = ρXt−1 + ut, t = 0,±1,±2, . . . , (1)

where |ρ| < 1, {ut} — i.i.d. random variables with E {u4
0} < ∞. Denote the moments

of u0: E {u0} = m, D {u0} = σ2, E {(u0 − E {u0})3} = µ3.
If only the second moment exists: E {u2

0} < ∞, the central limit theorem holds
for the process (1) (see e.g. [1, Theorem 7.7.8]). If higher moments are available and
u0 has the density then the asymptotic expansion of the corresponding order in the
central limit theorem has been proved [4]. In particular, if E {u4

0} < ∞ the expansion
of order 1 is obtained in [4] with the error o

(
1√
n

)
. We develop the latter case and

give, under the additional assumption on the density of u0, the asymptotic expansion
of order 1 with the error O

(
ln3 n

n

)
.

Introduce the normalized sum Sn:

Sn =
1

Bn

(
n∑

t=1

Xt −
mn

1 − ρ

)
.

Here

B2
n = D

{
n∑

t=1

Xt

}
=

σ2

(1 − ρ)2

(
n − 2ρ

1 − ρn

1 − ρ2

)
and E {Xt} =

m

1 − ρ
.

So E {S2
n} = 1. The explicit value of E {S3

n} will also be of use:

E
{
S3

n

}
=

µ3

σ3
·
n − 3ρ1−ρn

1−ρ3
1+ρ+ρ2−ρn+1

1+ρ(
n − 2ρ1−ρn

1−ρ2

) 3
2

.
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Theorem 1. Consider the AR(1) process (1) with E {u4
0} < ∞. Suppose that u0 has

the density p(x) satisfying the following condition:

+∞∫
−∞

|p(x + h) − p(x)|dx ≤ C|h| for some C > 0 and all h ∈ R. (2)

Then the following asymptotic expansion holds: as n → ∞,

sup
x∈R

∣∣∣∣P {Sn < x} − Φ (x) +
E {S3

n}
6

φ(x)(x2 − 1)

∣∣∣∣ = O
(

ln3 n

n

)
, (3)

where Φ (x) and φ(x) are the cumulative distribution function and density of the stan-
dard normal distribution, respectively.

Remark 1. The condition (2) is satisfied if the density p(x) is absolutely continuous

and
+∞∫
−∞

|p′(x)|dx = E
{∣∣∣∂ ln p(u0)

∂u0

∣∣∣} < ∞. Another sufficient condition can be stated in

terms of the characteristic function of u0, f(t): (2) holds if
+∞∫
−∞

|tf(t)|dt < ∞.

Remark 2. If µ3 = 0 (e.g. the distribution of u0 − m is symmetric) then E {S3
n} = 0

and (3) takes the form of the convergence rate in the central limit theorem.

Examples of the innovation process {ut} that satisfies the conditions of Theorem 1
include (we name the distributions of u0) the Student’s distribution with ν ≥ 5 degrees
of freedom, Laplace distribution and Skew-normal distribution. The latter is defined
to have the density p(x) = 2φ(x)Φ (cx), where c ∈ R is the shape parameter.

2 Proof
The proof of Theorem 1 will be carried out for the case m = 0, σ2 = 1. The general case
is then obtained by applying Theorem 1 to the “normalized” process X̄t=ρX̄t−1+ūt,
where X̄t = Xt − m

1−ρ
and ūt = ut−m

σ
.

The proof is based on our result [6] giving the asymptotic expansion of order 1 in
the central limit theorem for strong mixing processes.

The notion of strong mixing was introduced by M. Rosenblatt (1956) together
with the central limit theorem for strong mixing processes. Since then different types
of mixing for random processes have been introduced. Mixing describes the weak
dependence structure of the process when the “past” and “future” of the process become
asymptotically independent in a certain sense. Different common problems including
the central limit theorem have been extended to mixing processes. See [2] for the details
and definition of strong mixing.

The process (1) will be shown to be strong mixing under the assumptions of The-
orem 1. In fact, Theorem 1 is an application of our previous Theorem [6] to AR(1)
processes. We cite that Theorem from [6] for the ease of further reference.
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Let X1, X2, . . . be a sequence of random variables with E {Xt} = 0, E {X2
t } < ∞,

and a strong mixing coefficient α(·). Denote, as usual, B2
n = D {

∑n
t=1 Xt} and Sn =

= (
∑n

t=1 Xt)/Bn.
We introduce the three conditions which are commonly used (in a stronger or weaker

form) to prove the central limit theorem and its extensions for mixing processes:

sup
t

E
{
|Xt|3+δ

}
< ∞, (4)

B2
n ≥ C1n, (5)

α(k) = O
(
e−βk

)
, k → ∞. (6)

To obtain an asymptotic expansion we will need the additional condition on the charac-
teristic function of Sn, fn(t), (cf. with the condition (III) in [5, p. 213] for independent
sequences): ∫

C2T≤|t|≤C3ε−1
n

∣∣∣∣fn(t)

t

∣∣∣∣ dt = O (εn) , n → ∞, (7)

where T = T (n) is a parameter of Theorem 2 taking values in the interval(√
n
)1−δ

(ln n)δ− 1
2 ≤ T ≤

(√
n
)1−ε (8)

and εn = εn(T ) = T (ln n)5/2

n
.

Theorem 2 ([6]). Let X1, X2, . . . be a strong mixing sequence (not necessarily station-
ary) of random variables with E {Xt} = 0 and a strong mixing coefficient α(·). And
let there exist constants Ci > 0, i = 1, 2, 3, δ ∈ (0, 1], β > 0, ε ∈ (0, δ) and a function
T = T (n) from the interval (8) such that the conditions (4)–(7) are satisfied. Then the
following asymptotic expansion holds: as n → ∞,

sup
x∈R

∣∣∣∣P {Sn < x} − Φ (x) +
E {S3

n}
6

φ(x)(x2 − 1)

∣∣∣∣ = O (εn) . (9)

Now we show that the AR(1) process (1) satisfies the conditions of Theorem 2 with
δ = 1 and T =

√
ln n (note that this choice of parameters produces the strongest

possible estimate in (9)).
It is known that the process (1) is strictly stationary and Xt takes the form

Xt =
∞∑

k=0

ρkut−k, where the series converges in square mean (as well as almost surely).

It is seen that E {u4
0} < ∞ implies E {X4

t } < ∞ so (4) holds.
The condition (5) is verified immediately since the variance B2

n is calculated directly
and is specified at the beginning of the paper.

The strong mixing property of the process (1) with the mixing rate (6) is proven
by V. V. Gorodetskii [3] under the assumption (2).

Finally, to verify (7) we first notice that Sn is the infinite sum of independent
random variables:

Sn =
1

Bn

n∑
t=1

∞∑
k=0

ρkut−k =
1

Bn

∞∑
k=0

rkun−k,
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where rk =
k∑

i=0

ρi = 1−ρk+1

1−ρ
for k < n and rk =

k∑
i=k−n+1

ρi = ρk−n+1 · 1−ρn

1−ρ
for k ≥ n.

Then for the characteristic function fn(t) we have the following estimate:

|fn(t)| =

∣∣∣∣∣E
{

e
it 1

Bn

∞∑
k=0

rkun−k

}∣∣∣∣∣ =

∣∣∣∣∣
∞∏

k=0

E
{
eit 1

Bn
rkun−k

}∣∣∣∣∣ ≤
n−1∏
k=0

∣∣∣∣f ( t

Bn

rk

)∣∣∣∣ ,
where f(t) is the characteristic function of u0.

Since 0 < r− ≤ rk ≤ r+ < ∞ uniformly over all k < n and all n the argument
of f(·) in the last expression behaves like t√

n
. Then, for small values of t, we use the

bound [5, Theorem 2, p. 21]: |f(t)| ≤ 1 − ct2 ≤ e−ct2 for |t| ≤ τ , where c and τ are
some positive constants. For large values of t, since u0 has the density, we can bound
f(t) as follows: sup

|t|≥a

|f(t)| ≤ q < 1 for arbitrary fixed a > 0.

Applying these considerations to our case we obtain∫
C2T≤|t|≤C3ε−1

n

∣∣∣∣fn(t)

t

∣∣∣∣ dt ≤
∫

C2T≤|t|≤ τBn
r+

1

|t|

n−1∏
k=0

e−c( t
Bn

rk)
2

dt +

∫
τBn
r+

≤|t|≤C3ε−1
n

qn

|t|dt ≤

≤
∫

C2T≤|t|≤ τBn
r+

e−c1t2

|t| dt + 2qn ln(C3ε
−1
n ) ≤ C

(
e−c1(C2T )2

T 2
+ qn ln(C3ε

−1
n )

)
= o (εn)

if we choose T =
√

ln n and large enough C2.
Thus for the process (1) the asymptotic expansion (9) holds with εn = ln3 n

n
. This

coincides with the desired statement (3).
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