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Abstract

An open queueing network model in light traffic has been developed. The
probability limit theorem for the idle time process of customers in heavy traffic
in open queueing networks has been presented. Finally, we present an application
of the theorem - an idle time model from computer network practice.
Keywords: mathematical models of technical systems, performance evaluation,
queueing theory, open queueing network, light traffic, probability limit theorem,
idle time process of customers.

1 Introduction
One can apply the theory of queueing networks to obtain probability characteristics

of technical systems (for example, the idle function of computer networks). The idle
function of computer networks shows which part of time computer network is not
busy (idle). So in this paper, we present a probability limit theorem for the idle time
process of customers in light traffic in the queueing network. The service discipline is
“first come, first served" (FCFS).

We consider open queueing networks with the FCFS service discipline at each sta-
tion and general distributions of interarrival and service time.

The queueing network we studied has k single server stations, each of which has an
associated infinite capacity waiting room.

Every station has an arrival stream from outside the network, and the arrival
streams are assumed to be mutually independent renewal processes. Customers are
served in the order of arrival and after service they are randomly routed to either an-
other station in the network, or out of the network entirely. Service times and routing
decisions form mutually independent sequences of independent identically distributed
random variables. The basic components of the queueing network are arrival processes,
service processes, and routing processes.
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We begin with a probability space (Ω, B, P ) on which these processes are defined.
In particular, there are mutually independent sequences of independent identically
distributed random variables

{
z

(j)
n , n ≥ 1

}
,
{
S

(j)
n , n ≥ 1

}
and

{
Φ

(j)
n , n ≥ 1

}
for j =

1, 2, ..., k; defined on the probability space. Random variables z
(j)
n and S

(j)
n are strictly

positive, and Φ
(j)
n have support in {0, 1, 2, ..., k}. We define µj =

(
E
[
S

(j)
n

])−1

, σj =

D
(
S

(j)
n

)
and λj =

(
E
[
z

(j)
n

])−1

, aj = D
(
z

(j)
n

)
, j = 1, 2, ..., k; with all of these terms

assumed finite. Denote pij = P
(
Φ

(i)
n = j

)
, i, j = 1, 2, ..., k. The k×k matrix P = (pij)

is assumed to have a spectral radius strictly smaller than a unit. The matrix P is called
a routing matrix.

In the context of the queueing network, the random variables z
(j)
n function as inter-

arrival times (from outside the network) at the station j, while S
(j)
n is the nth service

time at the station j, and Φ
(j)
n is a routing indicator for the nth customer served at the

station j. If Φ
(i)
n = j (which occurs with probability pij), then the nth customer served

at the station i is routed to the station j. When Φ
(i)
n = 0, the associated customer

leaves the network.
At first, let us define Ij(t) as the idle time process of customers at the jth station

of the queueing network in time t (time t, which an open queueing network is not
busy (idle) serving customers at the jth station of the queueing network), β̂j =

1−
λj +

k∑
i=1

µi · pij

µj
, σ̂2

j =

k∑
i=1

p2
ij ·µi·

(
σj +

(
µi

µj

)2

· σi

)
+λj ·

(
σj +

(
λj

µj

)2

· aj

)
, j =

1, 2, · · · , k and t > 0.
We suppose that the following conditions are fulfilled:

λj +
k∑

i=1

µi · pij < µj, j = 1, 2, . . . , k. (1)

In addition, we assume throughout that

max
1≤j≤k

sup
n≥1

E
{(

z(j)
n

)2+γ
}

< ∞ for some γ > 0, (2)

max
1≤j≤k

sup
n≥1

E
{(

S(j)
n

)2+γ
}

< ∞ for some γ > 0. (3)

Conditions (2) and (3) imply the Lindeberg condition for the respective sequences
(usually γ = 1 works).

One of the results of the paper is a following probability limit theorem for the idle
time process of customers in an open queueing network (proof can be found in [1]).

Theorem 1. If conditions (1) - (3) are fulfilled, then

lim
n→∞

P

(
Ij(nt) − βj · n · t

σ̂j ·
√

n
< x

)
=

∫ x

−∞
exp(−y2/2)dy,

0 ≤ t ≤ 1 and j = 1, 2, . . . , k.
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2 Idle Time Function of Computer Network
Now we present a technical example from the computer network practice. Assume that
queues of customers requests arrive at the computer vj at a rate λj per hour during
business hours, j = 1, 2, . . . , k. These queues are served at the rate µj per hour by the
computer vj , j = 1, 2, . . . , k. After service in the computer vj , with probability pj

(usually pj ≥ 0.9), they leave the network and with probability pji, i �= j, 1 ≤ i ≤ k
(usually 0 < pji ≤ 0.1) arrive at the computer vi, i = 1, 2, . . . , k. Also, we assume the
computer vj to be idle when the idle time of waiting for service computer is less than
kj, j = 1, 2, . . . , k.

In this section, we will prove the following theorem on the idle time function of
computer network (probability of idle in computer network). Computer network is idle
when it is not busy.

Theorem 2. If t ≥ max
1≤j≤k

kj

β̂j

and conditions (1) - (3) are fulfilled, all computer in the

network are idle.

Therefore, using Theorem 1 we get for 0 < ε < 1

lim
n→∞

P

(
Ij(n) − βj · n

σ̂j ·
√

n
< x

)
=

∫ x

−∞
exp(−y2/2)dy, j = 1, 2, . . . , k. (4)

Let us investigate a computer network which consists of the elements (computers)
vj, j = 1, 2, . . . , k.

Denote
Xj =

{
1, if the element vj is idle
0, if the element vj is not idle,

j = 1, 2, . . . , k.
Note that {Xj = 1} = {Ij(t) < kj}, j = 1, 2, . . . , k.
Denote the structural function of the system of elements connected by scheme 1

from k (see, for example, [2]) as follows:

φ(X1, X2, . . . , Xk) =

{
1,

∑k
i=1 Xi ≥ 1

0,
∑k

i=1 Xi < 1.

Denote y =
∑k

i=2 Xi. Estimate the idle function of the system (computer network)
using the formula of the full conditional probability

h(X1, X2, . . . , Xk) = Eφ(X1, X2, . . . , Xk) = P (φ(X1, X2, . . . , Xk) = 1) =

P (

k∑
i=1

Xi ≥ 1) = P (X1 + y ≥ 1) = P (X1 + y ≥ 1|y = 1) · P (y = 1)+

P (X1 + y ≥ 1|y = 0) · P (y = 0) = P (X1 ≥ 0) · P (y = 1) + P (X1 ≥ 1) · P (y = 0) ≤
P (y = 1) + P (X1 ≥ 1) = P (y = 1) + P (X1 = 1) ≤ P (y ≥ 1) + P (X1 = 1)
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= P (
k∑

i=2

Xi ≥ 1) + P (X1 = 1) ≤ · · · ≤
k∑

i=1

P (Xi = 1) =
k∑

i=1

P (Ii(t) ≤ ki).

Thus,

0 ≤ h(X1, X2, . . . , Xk) ≤
k∑

i=1

P (Ii(t) ≤ ki). (5)

Applying Theorem 1 (with t = 1), we obtain that

0 ≤ lim
t→∞

P (Ij(t) < kj) = lim
n→∞

P (Ij(n) < kj) =

lim
t→∞

P

(
Ij(n) − βj · n

σ̂j ·
√

n
<

kj − βj · n
σ̂j ·

√
n

)
=

∫ −∞

−∞
exp(−y2/2)dy = 0. (6)

Thus (see (6)),
lim
t→∞

P (Ij(t) < kj) = 0, j = 1, 2, . . . , k. (7)

So, (see (5) and (7)), h(X1, X2, . . . , Xk) = 0. The proof of the theorem is completed.
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