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Abstract
The paper is designated to the analysis of queueing systems, arising in the

network and communications theory (called multiphase queueing systems, tan-
dem queues or series of queueing systems). The author investigated multiphase
queueing systems and presents heavy traffic limit theorems for the total queue
length of customers in multiphase queues. In this work, functional limit theorems
are proved for values of important probability characteristics of the queueing sys-
tem investigated as well as the total queue length of customers.
Keywords: mathematical models of technical systems, queueing systems, multi-
phase queues, heavy traffic, total queue length of customers.

1 Introduction
The paper is designated to the analysis of queueing systems, arising in the net-

works theory and communications theory (called multiphase queueing systems, tandem
queues or series of queueing systems). Multiphase queueing systems are of special inter-
est both in theory and in practical applications (message switching systems, processes
of conveyor production, retransmission of video images, etc.).

We investigated an important probability characteristic of the multiphase queueing
system (a total queue length of customers). In this paper, functional limit theorems
under heavy traffic conditions for values of the total queue length of customers are
proved. The main tool for the analysis of a multiphase queue in heavy traffic is the
functional limit theorem for a renewal process (the proof can be found in [1]).

We investigate here a k-phase multiphase queue (i.e., after a customer has been
served in the j-th phase of a multiphase queue, he goes to the j + 1-st phase of the
multiphase queue, and after the customer has been served at the k-th phase of the
multiphase queue, he leaves the queueing system). Let us denote tn as a time of arrival
of the n-th customer; S

(j)
n as the service time of the n-th customer at the j-th phase of

the multiphase queue; zn = tn+1 − tn. Let us introduce mutually independent renewal

processes xj(t) = {max
k

k∑
i=1

S
(j)
i ≤ t} (such a total number of customers can be served

at the j-th phase of the multiphase queue until time t, if devices are working without

time wasted), e(t) = {max
k

k∑
i=1

zi ≤ t} (the total number of customers which arrive at a

multiphase queue until the time moment t).
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Next, denote by τj(t) the total number of customers after service departure from
the j-th phase of multiphase queueing systems until time t; denote by Qj(t) the queue
length of customers at the j-th phase of the multiphase queue until the time moment

t; Vj(t) =
j∑

i=1

Qi(t) stands for the total queue length of customers in the j-th phase of

the multiphase queue at the time moment t, j = 1, 2, . . . , k and t > 0. Also, let Q̂j(t)
be the queue length of customers at the j-th phase of a modified multiphase queue

at time t, V̂j(t) =
j∑

i=1

Q̂i(t) stands for the total queue length of customers at the j-th

phase of a modified multiphase queue until t, j = 1, 2, . . . , k and t > 0.
Suppose that the queue length of customers at each phase of the multiphase queue

is unlimited, the service principle of customers is “first come, first served" (FCFS). All
random variables are defined on one common probability space (Ω, F, P ).

Let interarrival times (zn) at the the multiphase queue and service times (S
(j)
n )

at every phase of the multiphase queue for j = 1, 2, . . . , k be independent identically
distributed random variables.

Let us define βj = (MS
(j)
1 )−1, β0 = (Mz1)

−1, αj = β0 − βj , α0 ≡ 0,

σ̂2
j = DS

(j)
1 · (MS

(j)
1 )−3 > 0, σ̂2

0 = Dz1 · (Ez1)
−3 > 0, σ̃2

j = σ̂2
0 + σ̂2

j ,

σ2
j = σ̂2

j + σ̂2
0 , x̂j(t) = e(t) − xj(t), x̃j(t) = x̂j−1(t) − x̂j(t), j = 1, 2, . . . , k.

Let us consider, as in [3], a sequence of multiphase queues: S
(j)
m,n are independent

identically distributed random variables in the n-th multiphase queue, j = 0, 1, 2, . . . , k,
S

(0)
m,n = zm,n, m ≥ 1, n ≥ 1. Define Gj,n(x) = P(S

(j)
1,n < x), j = 0, 1, 2, . . . , k.

Let
DS

(j)
1,n · (ES

(j)
1,n)−3 → σ̂2

j > 0, j = 0, 1, 2, . . . , k. (1)

For simplicity, we omit the index n in the sequel.
First, we investigate a modified multiphase queueing system (in which devices are

working without time out) and a usual multiphase queueing system. Limiting distri-
butions for these queueing systems in heavy traffic conditions are the same (see, for
example, [2]).

Thus,

Qj(nt) − Q̂j(nt)√
n

⇒ 0, j = 1, 2, . . . , k. (2)

In [3], the relations

Qj(t) = τj−1 − τj(t), (3)
Qj(t) = ft(τj−1(·) − xj(·)), (4)

are obtained for (j = 1, 2, . . . , k) and ft(x(·)) = x(t) − inf
0≤s≤t

x(s).
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Next, using (3) - (4), we obtain that

V̂j(t) = e(t) − τj(t), (5)

V̂j(t) = x̂j(t) − inf
0≤s≤t

(x̂j(s) − V̂j−1(s)), (6)

j = 1, 2, . . . , k, V0(·) ≡ 0.

2 Main Results
Let us investigate the case, where

(βj−1 − βj) ·
√

n → Aj < ∞, j = 1, 2, . . . , k. (7)

Finally we will prove such a functional limit theorem.

Theorem 1. If conditions (1) and (7) are fulfilled, then(
V1(nt)√

n
;
V2(nt)√

n
; . . . ;

Vk(nt)√
n

)
⇒ (V1(t); V2(t); . . . ; Vk(t)),

where Vj(t) are fulfilled equation

Vj(t) = σj · zj(t) − inf
0≤s≤t

(σj · zj(s) − Vj−1(s) + Aj · s),

zj(t) are independent standard Wiener processes, j = 1, 2, . . . , k, V0(·) ≡ 0, 0 ≤ t ≤ 1.

Proof. Denote families of random functions in D as follows:

V n
j (t) =

Vj(nt) − αj · n · t√
n

, V̂ n
j (t) =

V̂j(nt) − αj · n · t√
n

,

X̂n
j (t) =

x̂j(nt) − αj · n · t√
n

, j = 1, 2, . . . , k, 0 ≤ t ≤ 1.

So from (6) we get that

V̂ n(t) = X̂n
j (s) −

inf
0≤s≤nt

(x̂j(s) − V̂j−1(s))
√

n
= X̂n

j (s) −
inf

0≤s≤t
(x̂j(ns) − V̂j−1(ns))

√
n

=

= X̂n
j (s) − inf

0≤s≤t
(X̂n

j (s) − V̂ n
j−1(s) − (βj−1 − βj) ·

√
n · s), j = 1, 2, . . . , k

and 0 ≤ t ≤ 1.

(8)

But
X̂n

j (t) ⇒ σj · zj(t), (9)

where zj(t) are standard Wiener processes, j = 1, 2, . . . , k, 0 ≤ t ≤ 1 (see, for example,
[2]).

Applying (6), (8), and (9), we get the proof of the theorem.
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