ON CONTROLLED BRANCHING PROCESSES WITH IMMIGRATION

Ya.M. Khusanbaev

Institute of Mathematics, Uzbek Academy of Sciences, Tashkent, UZBEKISTAN e-mail: yakubjank@mail.ru

Abstract

In the work is proved convergence of a branching process with immigration to the solution of a differential equation.

Let for each $n \in \mathbb{N}$, $\left\{ \xi_{k,j}^{(n)}(l), l, k, j \in \mathbb{N} \right\}$ and $\left\{ \varepsilon_k^{(n)}(l), l, k \in \mathbb{N} \right\}$ be independent totalities of independent nonnegative integer random variables such that distributions of $\xi_{k,j}^{(n)}(l)$ and $\varepsilon_k^{(n)}(l)$ don't depend on k,j. Let $\eta_0^{(n)}$ be a given nonnegative integer random number. For each $n \in \mathbb{N}$ we define the process $X_k^{(n)}$, $k \geq 0$ by the following recurrent relations

$$X_0^{(n)} = \eta_0^{(n)}, \quad X_k^{(n)} = \sum_{j=1}^{X_{k-1}^{(n)}} \xi_{k,j}^{(n)} \left(X_{k-1}^{(n)} \right) + \varepsilon_k^{(n)} \left(X_{k-1}^{(n)} \right). \tag{1}$$

Such defined process is called the Galton-Watson branching process with state-dependent immigration or controlled branching process with immigration. Suppose that variables $\eta_0^{(n)}$, $\xi_{k,i}^{(n)}(l)$ and $\varepsilon_k^{(n)}(l)$ have finite second moments and denote

$$m_n(x) = \mathbf{E}\xi_{k,j}^{(n)}(x), \quad \lambda_n(x) = \mathbf{E}\varepsilon_k^{(n)}(x), \quad \sigma_n^2(x) = \mathbf{var}\xi_{k,j}^{(n)}(x), \quad b_n^2(x) = \mathbf{var}\varepsilon_k^{(n)}(x).$$

Process (1) is said to be nearly critical if $m_n(x) \to 1$ as $n \to \infty$. Later, let $a_n, n \in \mathbb{N}$ be a sequence of positive non-random numbers. Let $\mathcal{F}_k^{(n)} = \sigma\left\{X_0^{(n)}, X_1^{(n)}, \dots, X_k^{(n)}\right\}$ be the σ -algebra generated by $X_0^{(n)}, X_1^{(n)}, \dots, X_k^{(n)}$. Define the step process $X_n(t), t \geq 0$ with trajectories in the Skorokhod space $\mathcal{D}(\mathbb{R}_+)$ by the following rule

$$X_n(t) = a_n X_{[nt]}^{(n)}, \quad t \in \mathbb{R}_+$$

where [.] means the integer part. Below, if we don't specify the other, the limit passage is realized by $n \to \infty$.

Theorem 1. Let the following conditions hold:
A)
$$m_n(x) = 1 + \frac{\alpha_n(x)}{n}$$
 where a function $\alpha_n(x)$ is such that $\alpha_0 = \sup_{x,n} |\alpha_n(x)| < \infty$;

B) 1) functions $\widetilde{\alpha}_n(x) = \alpha_n (a_n^{-1}x)$ and $\widetilde{\lambda}_n(x) = na_n\lambda_n (a_n^{-1}x)$ are such that for any $L \geq 0$ and $0 \leq x, y \leq L$ there exists C_L such that

$$\left|\widetilde{\lambda}_n(x) - \widetilde{\lambda}_n(y)\right| + \left|\widetilde{\alpha}_n(x) - \widetilde{\alpha}_n(y)\right| \le C_L|x - y|,$$

2)
$$\widetilde{\lambda}_n(x) \le C(1+x), x \ge 0;$$

C) there exist sequences of numbers σ_n^2 , b_n^2 and λ_n such that $\sigma_n^2(x) \leq \sigma_n^2$, $b_n^2(x) \leq b_n^2$, $\lambda_n(x) \leq \lambda_n$ for all $x \geq 0$, and also $na_n\sigma_n^2 \to 0$, $na_n^2b_n^2 \to 0$, $\overline{\lim_{n \to \infty}} na_n\lambda_n < \infty$;

D)
$$\widetilde{\alpha}_n(x) \to \alpha(x)$$
, $\widetilde{\lambda}_n(x) \to \lambda(x)$;

F) $a_n \eta_0^{(n)} \xrightarrow{P} \eta_0$ where η_0 is a finite random variable, moreover $\overline{\lim_{n \to \infty}} \mathbf{E} a_n \eta_0^{(n)} < \infty$. Then for any T > 0

$$\sup_{0 \le t \le T} |X_n(t) - \eta(t)| \xrightarrow{P} 0$$

where a process $\eta(t)$ is the solution of the differential equation

$$d\eta(t) = (\alpha(\eta(t)) \eta(t) + \lambda(\eta(t)) dt$$

with the initial condition $\eta(0) = \eta_0$.

Note that if $\xi_{k,j}^{(n)}(x)$ and $\varepsilon_k^{(n)}(x)$ don't depend on x, $a_n = n^{-1}$ and $\eta(0)^{(n)} = 0$, then the obtained result is compatible with the result of theorem 2.1 in [3].

Proof. Rewrite equation (1) in the form

$$X_k^{(n)} = X_{k-1}^{(n)} + \left(m_n \left(X_{k-1}^{(n)}\right) - 1\right) X_{k-1}^{(n)} + \lambda_n \left(X_{k-1}^{(n)}\right) + M_k^{(n)}$$
(2)

where

$$M_k^{(n)} = \sum_{j=1}^{X_{k-1}^{(n)}} \left(\xi_{k,j}^{(n)} \left(X_{k-1}^{(n)} \right) - m_n \left(X_{k-1}^{(n)} \right) \right) + \varepsilon_k^{(n)} \left(X_{k-1}^{(n)} \right) - \lambda_n \left(X_{k-1}^{(n)} \right).$$

Evidently, $M_k^{(n)}$ form the martingale-difference concerning to the stream $\left\{\mathcal{F}_k^{(n)}, k \geq 0\right\}$. Set $\eta_{nk} = a_n X_k^{(n)}, k \geq 0$. Write relation (2) in the form

$$\eta_{nk} = \eta_{nk-1} + \left(\widetilde{\alpha}_n \left(\eta_{nk-1}\right) \eta_{nk-1} + \widetilde{\lambda}_n \left(\eta_{nk-1}\right)\right) \cdot \frac{1}{n} + a_n M_k^{(n)}. \tag{3}$$

If we now prove for any T > 0

$$\sup_{0 \le t \le T} \left| a_n \sum_{k=1}^{[nt]} M_k^{(n)} \right| \xrightarrow{P} 0, \tag{4}$$

then we obtain by conditions of theorem and according to theorem 3.1 [1]

$$\max_{1 \le k \le nT} |\eta_{nk} - Z_{nk}| \xrightarrow{P} 0$$

where Z_{nk} satisfy the formula

$$Z_{nk} = Z_{nk-1} + \left(\widetilde{\alpha}_n(Z_{nk-1}) \cdot Z_{nk-1} + \widetilde{\lambda}_n(Z_{nk-1})\right) \cdot \frac{1}{n}.$$

Applying further theorem 3.2 [1] we obtain

$$\sup_{0 \le t \le T} |Z_n(t) - \eta(t)| = \max_{1 \le k \le nT} \left| Z_{nk} - \eta\left(\frac{k}{n}\right) \right| \stackrel{P}{\to} 0$$

where $Z_n(t) = Z_{n[nt]}$. Then

$$\sup_{0 \le t \le T} |X_n(t) - \eta(t)| \le \max_{1 \le k \le nT} |\eta_{nk} - Z_{nk}| + \max_{1 \le k \le nT} \left| Z_{nk} - \eta\left(\frac{k}{n}\right) \right| \xrightarrow{P} 0,$$

as was to be proved. Therefore we prove (4). For this it is sufficient to prove

$$a_n \sum_{k=1}^{[nt]} M_k^{(n)} \xrightarrow{P} 0 \tag{5}$$

and

$$a_n^2 \sum_{k=1}^{[nt]} \mathbf{E}\left(\left(M_k^{(n)}\right)^2 \middle/ \mathcal{F}_k^{(n)}\right) \to 0.$$
 (6)

Really, if (6) takes place, then the Lindeberg condition holds for the martingale-differences $M_k^{(n)}$, $k \ge 1$ as for any $\varepsilon > 0$

$$a_n^2 \sum_{k=1}^{[nt]} \mathbf{E} \left(\left(M_k^{(n)} \right)^2 I \left(a_n \left| M_k^{(n)} \right| > \varepsilon \right) \middle/ \mathcal{F}_k^{(n)} \right) \le a_n^2 \sum_{k=1}^{[nt]} \mathbf{E} \left(\left(M_k^{(n)} \right)^2 \middle/ \mathcal{F}_k^{(n)} \right) \xrightarrow{P} 0,$$

here I(A) is the indicator of the event A. We obtain from here, (5), (6), and applying theorem 11.1.7 [2]

$$a_n \sum_{k=1}^{[nt]} M_k^{(n)} \stackrel{J}{\to} 0$$

where \xrightarrow{J} means weakly convergence in the Skorokhod *J*-topology. Since the limit process is continuous (It equals identically zero), then *J*-convergence implies *U*-convergence. (4) follows from these reasonings.

Let's prove (5). We have

$$\mathbf{E}\left(a_n \sum_{k=1}^{[nt]} M_k^{(n)}\right)^2 \le a_n^2 \sigma_n^2 \sum_{k=1}^{[nt]} \mathbf{E} X_{k-1}^{(n)} + a_n^2 [nt] \cdot b_n^2. \tag{7}$$

Now estimate $\mathbf{E}X_{k-1}^{(n)}$. (1) implies

$$\mathbf{E}X_{k}^{(n)} = \mathbf{E}X_{k-1}^{(n)}m_{n}\left(X_{k-1}^{(n)}\right) + \lambda_{n}\left(X_{k-1}^{(n)}\right).$$

Applying conditions A and C we obtain from here

$$\mathbf{E}X_k^{(n)} \le m_n \mathbf{E}X_{k-1}^{(n)} + \lambda_n$$

where $m_n = 1 + \frac{\alpha_0}{n}$. Solving this inequality we come to the relation

$$\mathbf{E}X_k^{(n)} \le m_n^k \mathbf{E}X_0^{(n)} + \lambda_n \sum_{i=0}^{k-1} m_n^i \le m_n^k \mathbf{E}X_0^{(n)} + \alpha_0^{-1} n(m_n^k - 1)\lambda_n.$$
 (8)

If we apply the last relation and take into consideration that $\left(1 + \frac{\alpha_0}{n}\right)^{[nt]} \sim e^{\alpha_0 t}$ and $m_n \sim 1$ for sufficiently large n, then we obtain from (7)

$$a_n^2 \sum_{k=1}^{[nt]} \mathbf{E} \left(M_k^{(n)} \right)^2 \le \alpha_0^{-1} \cdot n a_n \sigma_n^2 \cdot \mathbf{E} \left(a_n X_0^{(n)} \right) \left(e^{\alpha_0 t} - 1 \right) +$$

$$+ \alpha_0^{-1} \cdot n a_n \sigma_n^2 \cdot n a_n \lambda_n \left(\alpha_0^{-1} \left(e^{\alpha_0 t} - 1 \right) - t \right) + n a_n^2 b_n^2 t \to 0$$
(9)

by virtue of C and F. Now applying the Chebyshev inequality we obtain (5). Let's prove (6). Taking into account C we have

$$a_n^2 \sum_{k=1}^{[nt]} \mathbf{E}\left(\left(M_k^{(n)}\right)^2 \middle/ \mathcal{F}_k^{(n)}\right) \le a_n^2 \sigma_n^2 \sum_{k=1}^{[nt]} X_{k-1}^{(n)} + n a_n^2 b_n^2 \cdot t.$$
 (10)

Similarly to reasonings as in (9) one can obtain

$$a_n^2 \sigma_n^2 \sum_{k=1}^{[nt]} \mathbf{E} X_{k-1}^{(n)} \to 0$$

what implies by the Chebyshev inequality

$$a_n^2 \sigma_n^2 \sum_{k=1}^{[nt]} X_{k-1}^{(n)} \xrightarrow{P} 0.$$

Then taking into consideration condition C we obtain from (10) relation (6).

References

- [1] Anisimov V.V., Lebedev E.A. Stochastic Service Nets. Markovian Models. Kiev: "Libid". 1992. 207 p. (in Russian)
- [2] Liptser R.Sh., Shiryaev A.N. Martingales Theory. Moscow: Nauka, 1986. 512 p. (in Russian)
- [3] Ispany M., Pap G., Van Zuijlen M.C.A. Fluctuation limits of branching processes with immigration and estimation of the means. // Adv. Appl.Probab. 2005, v.37, p.523-538.