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Abstract

In the work is proved convergence of a branching process with immigration to
the solution of a differential equation.

Let for each n ∈ N,
{
ξ

(n)
k,j (l), l, k, j ∈ N

}
and

{
ε
(n)
k (l), l, k ∈ N

}
be independent

totalities of independent nonnegative integer random variables such that distributions
of ξ

(n)
k,j (l) and ε

(n)
k (l) don’t depend on k, j. Let η

(n)
0 be a given nonnegative integer

random number. For each n ∈ N we define the process X
(n)
k , k ≥ 0 by the following

recurrent relations

X
(n)
0 = η

(n)
0 , X

(n)
k =

X
(n)
k−1∑

j=1

ξ
(n)
k,j

(
X

(n)
k−1

)
+ ε

(n)
k

(
X

(n)
k−1

)
. (1)

Such defined process is called the Galton-Watson branching process with state-de-
pendent immigration or controlled branching process with immigration. Suppose that
variables η

(n)
0 , ξ

(n)
k,j (l) and ε

(n)
k (l) have finite second moments and denote

mn(x) = Eξ
(n)
k,j (x), λn(x) = Eε

(n)
k (x), σ2

n(x) = varξ
(n)
k,j (x), b2

n(x) = varε
(n)
k (x).

Process (1) is said to be nearly critical if mn(x) → 1 as n → ∞. Later, let an, n ∈ N

be a sequence of positive non-random numbers. Let F (n)
k = σ

{
X

(n)
0 , X

(n)
1 , . . . , X

(n)
k

}
be the σ-algebra generated by X

(n)
0 , X

(n)
1 , . . . , X

(n)
k . Define the step process Xn(t), t ≥ 0

with trajectories in the Skorokhod space D(R+) by the following rule

Xn(t) = anX
(n)
[nt], t ∈ R+

where [·] means the integer part. Below, if we don’t specify the other, the limit passage
is realized by n → ∞.

Theorem 1. Let the following conditions hold:
A) mn(x) = 1 + αn(x)

n
where a function αn(x) is such that α0 = sup

x,n
|αn(x)| < ∞;

B) 1) functions α̃n(x) = αn (a−1
n x) and λ̃n(x) = nanλn (a−1

n x) are such that for any
L ≥ 0 and 0 ≤ x, y ≤ L there exists CL such that∣∣∣λ̃n(x) − λ̃n(y)

∣∣∣+ |α̃n(x) − α̃n(y)| ≤ CL|x − y|,
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2) λ̃n(x) ≤ C(1 + x), x ≥ 0;
C) there exist sequences of numbers σ2

n, b2
n and λn such that σ2

n(x) ≤ σ2
n, b2

n(x) ≤ b2
n,

λn(x) ≤ λn for all x ≥ 0, and also nanσ2
n → 0, na2

nb2
n → 0, lim

n→∞
nanλn < ∞;

D) α̃n(x) → α(x), λ̃n(x) → λ(x);

F) anη
(n)
0

P→ η0 where η0 is a finite random variable, moreover lim
n→∞

Eanη
(n)
0 < ∞.

Then for any T > 0

sup
0≤t≤T

|Xn(t) − η(t)| P→ 0

where a process η(t) is the solution of the differential equation

dη(t) = (α (η(t)) η(t) + λ (η(t)) dt

with the initial condition η(0) = η0.

Note that if ξ
(n)
k,j (x) and ε

(n)
k (x) don’t depend on x, an = n−1 and η(0)(n) = 0, then

the obtained result is compatible with the result of theorem 2.1 in [3].

Proof. Rewrite equation (1) in the form

X
(n)
k = X

(n)
k−1 +

(
mn

(
X

(n)
k−1

)
− 1

)
X

(n)
k−1 + λn

(
X

(n)
k−1

)
+ M

(n)
k (2)

where

M
(n)
k =

X
(n)
k−1∑

j=1

(
ξ

(n)
k,j

(
X

(n)
k−1

)
− mn

(
X

(n)
k−1

))
+ ε

(n)
k

(
X

(n)
k−1

)
− λn

(
X

(n)
k−1

)
.

Evidently, M
(n)
k form the martingale-difference concerning to the stream{

F (n)
k , k ≥ 0

}
. Set ηnk = anX

(n)
k , k ≥ 0. Write relation (2) in the form

ηnk = ηnk−1 +
(
α̃n (ηnk−1) ηnk−1 + λ̃n (ηnk−1)

)
· 1

n
+ anM

(n)
k . (3)

If we now prove for any T > 0

sup
0≤t≤T

∣∣∣∣∣∣an

[nt]∑
k=1

M
(n)
k

∣∣∣∣∣∣ P→ 0, (4)

then we obtain by conditions of theorem and according to theorem 3.1 [1]

max
1≤k≤nT

|ηnk − Znk|
P→ 0

where Znk satisfy the formula

Znk = Znk−1 +
(
α̃n(Znk−1) · Znk−1 + λ̃n(Znk−1)

)
· 1

n
.
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Applying further theorem 3.2 [1] we obtain

sup
0≤t≤T

|Zn(t) − η(t)| = max
1≤k≤nT

∣∣∣∣Znk − η

(
k

n

)∣∣∣∣ P→ 0

where Zn(t) = Zn[nt]. Then

sup
0≤t≤T

|Xn(t) − η(t)| ≤ max
1≤k≤nT

|ηnk − Znk| + max
1≤k≤nT

∣∣∣∣Znk − η

(
k

n

)∣∣∣∣ P→ 0,

as was to be proved . Therefore we prove (4). For this it is sufficient to prove

an

[nt]∑
k=1

M
(n)
k

P→ 0 (5)

and

a2
n

[nt]∑
k=1

E

((
M

(n)
k

)2
/

F (n)
k

)
→ 0. (6)

Really, if (6) takes place, then the Lindeberg condition holds for the martingale-
differences M

(n)
k , k ≥ 1 as for any ε > 0

a2
n

[nt]∑
k=1

E

((
M

(n)
k

)2

I
(
an

∣∣∣M (n)
k

∣∣∣ > ε
)/

F (n)
k

)
≤ a2

n

[nt]∑
k=1

E

((
M

(n)
k

)2/
F (n)

k

)
P→ 0,

here I(A) is the indicator of the event A. We obtain from here, (5), (6), and applying
theorem 11.1.7 [2]

an

[nt]∑
k=1

M
(n)
k

J→ 0

where J→ means weakly convergence in the Skorokhod J-topology. Since the limit
process is continuous (It eqauls identically zero), then J-convergence implies U-
convergence. (4) follows from these reasonings.

Let’s prove (5). We have

E

⎛⎝an

[nt]∑
k=1

M
(n)
k

⎞⎠2

≤ a2
nσ2

n

[nt]∑
k=1

EX
(n)
k−1 + a2

n[nt] · b2
n. (7)

Now estimate EX
(n)
k−1. (1) implies

EX
(n)
k = EX

(n)
k−1mn

(
X

(n)
k−1

)
+ λn

(
X

(n)
k−1

)
.

Applying conditions A and C we obtain from here

EX
(n)
k ≤ mnEX

(n)
k−1 + λn
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where mn = 1 +
α0

n
. Solving this inequality we come to the relation

EX
(n)
k ≤ mk

nEX
(n)
0 + λn

k−1∑
j=0

mj
n ≤ mk

nEX
(n)
0 + α−1

0 n(mk
n − 1)λn. (8)

If we apply the last relation and take into consideration that
(
1 + α0

n

)[nt] ∼ eα0t and
mn ∼ 1 for sufficiently large n, then we obtain from (7)

a2
n

[nt]∑
k=1

E
(
M

(n)
k

)2

≤ α−1
0 · nanσ2

n · E
(
anX

(n)
0

) (
eα0t − 1

)
+

+α−1
0 · nanσ2

n · nanλn

(
α−1

0

(
eα0t − 1

)
− t

)
+ na2

nb2
nt → 0 (9)

by virtue of C and F. Now applying the Chebyshev ineqaulity we obtain (5).
Let’s prove (6). Taking into account C we have

a2
n

[nt]∑
k=1

E

((
M

(n)
k

)2/
F (n)

k

)
≤ a2

nσ2
n

[nt]∑
k=1

X
(n)
k−1 + na2

nb2
n · t. (10)

Similarly to reasonings as in (9) one can obtain

a2
nσ2

n

[nt]∑
k=1

EX
(n)
k−1 → 0

what implies by the Chebyshev inequality

a2
nσ2

n

[nt]∑
k=1

X
(n)
k−1

P→ 0.

Then taking into consideration condition C we obtain from (10) relation (6).
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