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Abstract

In the work is proved convergence of a branching process with immigration to
the solution of a differential equation.

Let for cach n € N, {g,ﬁi;?a),l,k, je N} and {g,(j)(z),z,k e N} be independent
totahtles of inde (pendent nonnegative integer random variables such that distributions
of §k’j( ) and ¢, don’t depend on k,j. Let 7]0 ) be a glven nonnegative integer

random number. For each n € N we define the process x B , k > 0 by the following
recurrent relations

X,
X(gn) = 77 Z 5kg ( ) + El(c g (Xlgﬂ) : (1)

Such defined process is called the Galton-Watson branching process with state-de-
pendent 1mm1grat1on or controlled branching process with immigration. Suppose that
variables 7] 5/@ J( ) and 5 (l) have finite second moments and denote

ma(z) = BEM (), Ai(x) = EelV(z), o2(z) = varg)(z), b2 (x) = vare)”(z).

Process (1) is said to be nearly critical if m,,(z) — 1 as n — oo. Later, let a,,, n € N
be a sequence of positive non-random numbers. Let F,En) =0 {Xén), Xl(n), o X ,gn)}

be the o-algebra generated by Xén), XM ,X,fj”. Define the step process X,,(t), ¢ > 0
with trajectories in the Skorokhod space D(R ) by the following rule

Xu(t) = a, X[, tER,

where [-| means the integer part. Below, if we don’t specify the other, the limit passage
is realized by n — oc.

Theorem 1. Let the followzng conditions hold:

A) ma(z) = 1+ 28 where a function a,(x) is such that o = sup |a, ()] < oo

B) 1) functions &n(x) = ay, (a7'z) and X\, (x) = na,\, (a;'z) are such that for any
L>0and0<x,y <L there exists Cr, such that

An(T) — Xn(y) + [an(2) — an(y)] < Crlz -y,
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2) M) < C(1+ ), 2> 0;
C) there exist sequences of numbers O'n, b2 and N, such that o(z) < o2, b2 (x) < b2,

Ao(2) < A\ for all z > 0, and also na,o? — 0, na2b? — 0, lim na,\, < oo;

D) o (x ) a(z), An(r) = Az);
F) ann((] Rl 1o where 1y is a finite random variable, moreover lim Eann(() ") < 0.
Then for any T > 0

sup | X (1) —n(t)] >0

0<t<T

where a process n(t) is the solution of the differential equation
dn(t) = (a(n(t)) n(t) + A (n(t)) dt
with the initial condition n(0) = 1.

Note that if §,(€n]) (z) and e (z) don’t depend on z, a, = n~! and n(0)™ = 0, then
the obtained result is compatible with the result of theorem 2.1 in [3].

Proof. Rewrite equation (1) in the form

X0 = X0+ (ma (X)) = 1) X (X)) + g 2)
where
M= 3 (e (KE) —ma () e ()~ (30).
7=1

Evidently, M ,gn) form the martingale-difference concerning to the stream
{]—“,gn), k> 0} . Set Ny, = anX,g"), k > 0. Write relation (2) in the form

_ ~ 1 .
Tnk = Tnk—1 + (an (nnkz—l) Nnk—1 + >\n (nnk—l)) : ﬁ + aan(; ) (3)

If we now prove for any 7" > 0
[rt]

sup |ay, Z M(” o, (4)

0<i<T |
then we obtain by conditions of theorem and according to theorem 3.1 [1]
max_ | — Znk| = 0
1<k<nT

where 7, satisfy the formula

S|

anz - an—l + (an(anz—l) : an—l + Xn<an—1)) :
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Applying further theorem 3.2 [1] we obtain

7 (t) — -
@fgﬂ n(t) —n(t)] = max

where Z,,(t) = Zypnyg. Then

P
— 0,

_ < _
OzltlngXn(t) n(t)l_lgmkngnnk Z"’“l“Lé%%’éT

k

as was to be proved . Therefore we prove (4). For this it is sufficient to prove

[nt]

and

ai%E ((M,E")>2/f,§")) 0. (6)

Really, if (6) takes place, then the Lindeberg condition holds for the martingale-
differences M\, k > 1 as for any & > 0

[nt] 9 [nt] 9
2 E ((M,S”) 1 (a >¢) /f,ﬁ’”) <a2} E ((M,S”) /f,ﬁ")) L)
k=1 k=1

here I(A) is the indicator of the event A. We obtain from here, (5), (6), and applying
theorem 11.1.7 [2]

M

[nt]

k=1

where % means weakly convergence in the Skorokhod J-topology. Since the limit
process is continuous (It eqauls identically zero), then J-convergence implies U-
convergence. (4) follows from these reasonings.

Let’s prove (5). We have

2
[nt] [nt]
E [ a, Z M,gn) <a’o? Z EX,gTi)l +aZ[nt] - b2. (7)
k=1 k=1

Now estimate EX(™,. (1) implies
EX{" = BX{m, (X)) + A (X))
Applying conditions A and C we obtain from here
EX™ <m,EX™ + A,
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o
where m,, =1+ ity Solving this inequality we come to the relation
n

k—1
EX,gn) < meEXO(n) + A\ Z m!, < meEXén) +agtn(mE — 1)\,
5=0
If we apply the last relation and take into consideration that (1 + %) il gao

m, ~ 1 for sufficiently large n, then we obtain from (7)

[nt]

2
a’ ZE (M,ﬁ”)) <ay'na,o? - E (anXén)) (e®" —1) +
k=1

+ay ! - na,ol - nag\, (gt (e — 1) — t) + nalbit — 0

by virtue of C and F. Now applying the Chebyshev ineqaulity we obtain (5).
Let’s prove (6). Taking into account C we have

[nt]

[nt]
2
23 B ((M,gn>) /f,gn>> <202 X, +na2k 1.
k=1 k=1
Similarly to reasonings as in (9) one can obtain
[nt]
a’o? Z EX" —0
k=1
what implies by the Chebyshev inequality
[nt] b,
a’o? Z X,@l — 0.
k=1
Then taking into consideration condition C we obtain from (10) relation (6).
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