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Abstract
The paper deals with the problem of a statistical analysis of time series con-

nected with the estimation of variogram. We present the limiting expressions of
the first two moments and the higher order cumulants of the classical variogram
estimator of Gaussian intrinsically stationary stochastic process with continu-
ous time. These expressions are then used to prove the theorem concerning the
asymptotic distribution of the variogram estimator.

1 Introduction

Consider a random process X(s), s ∈ R. Suppose further that X(s), s ∈ R, is a zero-
mean, variance σ2, intrinsically stationary Gaussian stochastic process with unknown
covariance function R(h), h ∈ R, and variogram 2γ(h) = M(X(s+h)−X(s))2, s, h ∈ R,
is given in Cressie (1985).

It is easy to show that {X(s+h)−X(s)}2 = 2γ(h)·χ2
1, where χ2

1 denotes a chi-square
random variable on 1 df. Therefore,

M{X(s + h) −X(s)}2 = 2γ(h),

D{X(s+ h) −X(s)}2 = 2{2γ(h)}2,

corr({X(t+ h1) −X(t)}2, {X(s+ h2) −X(s)}2) =

{corr(X(t+ h1) −X(t), X(s+ h2) −X(s))}2 =

= {γ(t+ h1 − s) + γ(t− s− h2) − γ(t+ h1 − s− h2) − γ(t− s)√
2γ(h1)

√
2γ(h2)

}2, (1)

where ”corr” denotes correlation.
The variogram estimator 2γ̃(h) in terms of sequence of observations

X(1), ..., X(n), is defined as

2γ̃(h) =
1

n− h

n−h∑
s=1

(X(s+ h) −X(s))2, (2)

h = 0, n− 1, with 2γ̃(−h) = 2γ̃(h), h = 0, n− 1 and 2γ̃(h) = 0, for | h |≥ n.
It is the purpose of this paper to derive the asymptotic distribution of the variogram

estimator 2γ̃(h), h = 0, n− 1. The approach is similar to the approach taken in the
time series literature, and the reader is referred to Brillinger (1975), Troush (1999),
Tsekhavaya (2002) for theorems regarding the asymptotic distribution of the spectral
density estimator, covariance estimator and variogram estimator of a time series.
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2 First-, Second-order Moments

In order to state and prove the theorem concerning the asymptotic distribution of the
variogram estimator 2γ̃(h), h = 0, n− 1, it is first necessary to calculate the first two
moments of the examined estimator (2).

The classical variogram estimator 2γ̃(h) is unbiased for 2γ(h).

Theorem 1. For the variogram estimator 2γ̃(h) , h = 0, n− 1, the expressions

cov{2γ̃(h1), 2γ̃(h2)} = (3)

=
2

(n− h1)(n− h2)

n−h1∑
t=1

n−h2∑
s=1

{γ(t+h1−s)+γ(t−s−h2)−γ(t+h1 −s−h2)−γ(t−s)}2,

D{2γ̃(h)} =
2

(n− h)2

n−h∑
t,s=1

{γ(t− s + h) + γ(t− s− h) − 2γ(t− s)}2 (4)

are valid, where h, h1, h2 = 0, n− 1.

Proof. From the definition of the covariance, we can show that cov{2γ̃(h1), 2γ̃(h2)} =

=
1

(n− h1)(n− h2)

n−h1∑
t=1

n−h2∑
s=1

cov{(X(t+ h1) −X(t))2, (X(s+ h2) −X(s))2}.

Using the relation (1)

cov{2γ̃(h1), 2γ̃(h2)} =
2{2γ(h1)}{2γ(h2)}
(n− h1)(n− h2)

×

×
n−h1∑
t=1

n−h2∑
s=1

{γ(t+ h1 − s) + γ(t− s− h2) − γ(t+ h1 − s− h2) − γ(t− s)√
2γ(h1)

√
2γ(h2)

}2,

and hence (3) is valid. Introducing h1 = h2 = h, it is easy to show (4).
We shall found the limiting expressions of the second-order moments of the vari-

ogram estimator (2).

Theorem 2. Let ∑+∞
r=−∞ | R(r) |< ∞. (5)

Then
lim
n→∞

(n−min{h1, h2})cov{2γ(h1), 2γ(h2)} = (6)

= 2
+∞∑

m=−∞
{γ(m− h2) + γ(m+ h1) − γ(m+ h1 − h2) − γ(m)}2,

lim
n→∞

(n− h)D{2γ(h)} = 2{(2γ(h))2 + 2

+∞∑
m=1

(γ(m− h) + γ(m+ h) − 2γ(m))2}, (7)

where h, h1, h2 = 0, n− 1.

230



Proof. Consider (3). Assume that h1 > h2. Introducing t = t, t− s = m, we write

cov{2γ̃(h1), 2γ̃(h2)} =
2

n− h2

{
n−h1−1∑

m=−(n−h2−1)

(γ(m+h1)+γ(m−h2)−γ(m+h1−h2)−γ(m))2−

− 2

n− h1

n−h1−1∑
m=1

m(γ(m+ h1) + γ(m− h2) − γ(m+ h1 − h2) − γ(m))2}.

A similar expression can be derived for h1 < h2. Hence, applying (5), we obtain (6).
The limiting expression (7) for variance of the classical variogram estimator 2γ(h)

follows immediately from (6) if h1 = h2 = h.

Corollary 1. Let all the assumptions of Theorem 2 be satisfied. Then it follows that
limn→∞ cov{2γ̃(h1), 2γ̃(h2)} = 0, limn→∞D{2γ̃(h)} = 0, h, h1, h2 = 0, n− 1.

3 Higher Order Cumulants

In order to found the asymptotic distribution of the variogram estimator 2γ̃(h) it is nec-
essary to investigate an asymptotic behavior of the cumulant cum{2γ̃(h1), ..., 2γ̃(hp)},
hj = 0, n− 1, j = 1, p.

Theorem 3. The cumulant of the variogram estimator (2) is

cum{2γ̃(h1), ..., 2γ̃(hp)} = {
p∏
j=1

(n− hj)}−1× (8)

×
∑

D=
⋃p

q=1D
′
q

n−h1∑
s1=1

...

n−hp∑
sp=1

2∑
i1,...,ip=0

mi1 ...mip

p∏
q=1

cov{X(st + [
it − 1 + r

2
]ht); (t, r) ∈ D′

q},

where hj = 0, n− 1, j = 1, p, the summation over D =
⋃p
q=1D

′
q is over all inde-

composable partitions D′
q = {(t1, r1), (t2, r2)}, t1, t2 = 1, p, r1, r2 = 1, 2, of the set

D = {(1, 1), (1, 2), (2, 1), (2, 2), ..., (p, 1), (p, 2)}, cov{X(st + [ it−1+r
2

]ht); (t, r) ∈ D′
q} is

the covariance of X(st + [ it−1+r
2

]ht) with (t, r) ∈ D′
q, t = 1, p, r = 1, 2, [ i

2
] is the whole

part of number i
2
, mij = {1, if ij = 0, 2;−2, if ij = 1.}

Proof. Applying the properties of a sample cumulants Brillinger (1975), we obtain

cum{2γ̃(h1), ..., 2γ̃(hp)} = {
p∏
j=1

(n− hj)}−1×

×
n−h1∑
s1=1

...

n−hp∑
sp=1

cum{(X(s1 + h1) −X(s1))
2, ..., (X(sp + hp) −X(sp))

2} =

= {
p∏
j=1

(n− hj)}−1

n−h1∑
s1=1

...

n−hp∑
sp=1

2∑
i1,...,ip=0

mi1 ...mip×
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×cum{X(s1 + [ i1
2
]h1)X(s1 + [ i1+1

2
]h1), ..., X(sp + [ ip

2
]hp)X(sp + [ ip+1

2
]hp)},

Let Yt = X(st+[ it
2
]ht)X(st+[ it+1

2
]ht), t = 1, p. Lemma 2.5 of Troush (1999) then yields

cum{2γ̃(h1), ..., 2γ̃(hp)} = {
∏p

j=1(n− hj)}−1×

×
∑

D=
⋃M

q=1Dq

n−h1∑
s1=1

...

n−hp∑
sp=1

2∑
i1,...,ip=0

mi1 ...mip

M∏
q=1

cum{X(st + [
it − 1 + r

2
]ht); (t, r) ∈ Dq},

where the summation over D =
⋃M
q=1Dq is over all indecomposable partitions of the

set D, cum{X(st + [ it−1+r
2

]ht); (t, r) ∈ Dq}, is the cumulants of X(st + [ it−1+r
2

]ht) with

(t, r) ∈ Dq, t = 1, p, r = 1, 2,
⋃M
q=1Dq = D, M = 1, 2p.

Because MX(s) = 0 and the sample cumulants of the Gaussian stationary stochas-
tic process cum{X(t1), ..., X(tp−1)} = 0, p > 2, then (8) is valid.

Theorem 4. Let all the assumptions of Theorem 3 be satisfied. Then

lim
n→∞

cum{2γ̃(h1), ..., 2γ̃(hp)} = 0, (9)

where 2γ̃(h) is the variogram estimator given by (2), hj = 0, n− 1, j = 1, p, p ≥ 2.

Proof. The result follows directly from (5).

Theorem 5. Let
∑+∞

h=−∞ |γ(h)| < ∞. The conclusion (9) of Theorem 4 then holds.

Proof. The proof of this theorem follows directly from the relation between the covari-
ance function and variogram of a zero-mean second-order-stationary stochastic process:

2γ(h) = 2{R(0) − R(h)}, h ∈ R.

4 Asymptotic Distribution

Theorem 6. Let all the assumptions of Theorem 4 or Theorem 5 be satisfied. Then the
variogram estimator (2) is asymptotically normally distributed with mean 2γ(h), h ∈ R,
and asymptotic variance (7).

Proof. As we have mentioned before, M{2γ̃(h)} = 2γ(h), and the conditions (7) and
(9) are valid. From Theorem 1.2 of Troush (1999), we have the final proof of Theorem.
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