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Abstract
In this paper, we introduce the representation of density functions in the form
of convergent series and point out some properties of absolute order p of a-stable
random variables.

1 Introduction

Stable distributions are a rich class of probability distributions, the lack of closed
formulas for densities and distribution functions is sometimes a nuisance when working
with stable distributions. In practice, all numerical calcutations of densities are based
on other representations of density functions. There are three basic ones that are used:
integrals of non-oscillating functions [5, 6], convergent series and asymptotic series [1,
3, 4]. In this paper, we introduce the representation of density functions in the form of
convergent series and point out some properties of absolute order p of a-stable random
variables.

2 Main result

Let us remind first the definition of « - stable random variables. A random variable
X is a - stable, 0 < o < 2 if its characteristic function has the form

| exp{—0%|t|*exp[—ifsign(t) K (a)] + iut} if a#1
Px(t) = { exp{—0[t|[5 + iBsign(t)In|t|] + iut} if a=1, ()

where K(a) =a — 1+ sign(l —«), d >0, 8 € [-1;1], u € R. In this case, we denote
X ~ S.(6,6,n). If gx(x,a, 3) is denoted for density function of X ~ S, (4, 3,0), then
by [1], we have
qX<I7a7B)ZQX<_I7O‘7_B)' (2)
Therefore, it is sufficient to represent ¢x (x, cv, ) while x > 0. In fact, the probability
density functions of stable random variables exist and are continuous, but with a few
exceptions, they are not known in a closed form. However, power series expansions can
be derived for gx(z, a, 3). The following represention of density functions of « - stable
random variables X is given by [1, 4]

0 —1)r1

%Z %F(an + Dsin(npm)z™™ 1 if0<a<1

QX(QZ? a, 6) = nO:Ol (_1)n—1 n T (3)
%Z Tf(a + l)sin(npa)xn_l itl <a <2,

n=1
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where point out that p = 3%, v = 8K (), = > 0.
The case of @ = 1, § # 0, [3] shows that, density functions of 1 - stable random
variables are represented in the form

1 o0
1 —— -1 n—1 bn n—1
ax(@.1,5) W; )" tnba(8)2"
where
1

b, (B) = ) /000 exp{—ptInt}t" 'sin[(1 + B)tg]dt.

I'(n+1

From [2], we know that, if X is « - stable then its absolute moment order p exists
if and only if 0 < p < a < 2. The cloused formula of absolute moment order p of X,
0 <p<a<?2,is given by the following theorem.

Theorem 1. If X ~ S,(1,3,0), then absolute moment order p of X, 0 <p < a < 2,
18

EIX[P = (4)

Proof. From (1), when o # 1 and = > 0, we have

1 <
qx(z, o, B) = qx(—z,a, =) = ;Re/ e"px(t)dt
0
1 R
= —Re/ e’txexp{—t“exp[i’yg]}dt
0

™

1 oo
= —Im/ exp{—tx — t“exp(—ipm)}dt.
T 0

Therefore, using Jordan lemma we have

o0 1 o0 o0
I(p,a,7y) = / 2Pax(x, o, f)de = —/ a:pl'm/ exp{—tx — t*exp(—ipm)}dtdx
0 0 0

s
1

= —/ xpe_mdacfm/ exp{—t“exp(—ipm)}dt
0 0

™

1 oo
=-T(p+ 1)Im/ t= P Derp{ —t*exp(—ipr)}dt
T 0
1
[exp(—ipm)

i

= %F(p +1)Im{ 7z /Ooo[Z.exp(—i,mr)]_E—lexp[—z.exp(—i,mr)]dz.exp(—@',mr)}

—

QI3

= —T(p+ DImlerp(~ipm)] T (1)

a sin(pm)I(1 —p

Using the above, we see that
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Ewwzf Pax (2, , B)da /‘ qum@M+/)ﬂﬂ%m@M
_ 0

— [ ax(e.a s - [ axl-n,a s

0 0

= 2Pax(x, o, ) dx—l—/ 2Pax(x,a, —F)dx
0

cos(LE)I(1 — 2)

plet a

cos()T(1—p)

Because of the continuous property, formula (4) is also true in the case of a = 1.

This completes the proof.

Stable densities are supported on either the whole real line or a half line. The latter
situation can only occur when o < 1 and 3 =1 or f# = —1. By the assessment of the
support of the stable distribution in [7], we see that, if X is a a-stable random variable
then for any p, 0 < p < o < 2, |X|? is not a stable random variable. The following
theorem will give the density functions of | X |7 in the form of convergent series.

Theorem 2. Let X ~ S,(1,53,0), then for all p, p > 0, the density function of | X|?
has the form

:[<paa7’7)+[<paaa_’y) =

— (=) o
23 CV ran 4 Dsin(n S eostn a5 0 <a <1
mn.
q\X|p<xa a)ﬁ) = no:ol n
2 (_1) 2n+1 (2n—|—1)’y7r il
p— r 1 e L l<a<?

(5)
where x > 0.
Proof. For x > 0, we have
zl/p
PUXP <a)= [ alt.a.p
—xl/p
Thus the density function of | X|P will be

1 a 1 ~
qxp(r) = Z;Q(:v”,a,ff)x”” L4 ]—)q(xp,a,ﬁ)xl/p L

The case of 0 < a < 1, with p = _”;a, by(3) we have

no

(@) = = 3 1 + Dfsin(pm) + sin(rgmleE

T = n!
2 = (1)1 . am YT, _na_g
2l (an + 1)sin(n ) Jcos(n 5 Yo r

The same procedure is for the case of 1 < o < 2.
This completes the proof.
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Corollary. If X ~ S,(0,/,0), then
X* Lyt a—o0f
where Y has the exponential distribution.

Proof. We consider the case of 0 < a < 1, from (5) with p = a, we have

qxpe(r) = 2 Z (=)™ I(an + 1)8in(ng)cos(nﬂ)x_"_l

mo £ n! 2 2
1 & (—1)»1 sin(ns
— (=1) 'F(om 1) (M2 )cos(nﬂ)x_"+1
x? £ (n — 1)! (n%r) 2
1 - (_1)71—1 —n+1 |
22t TRt (6)
when o — 0%,
Moreover, we know that the distribution function of Y= is
1
PY'<2)=PY >-)= eF, x>0
x
Hence
1 1
Q|y‘—l = Pe z, T > 0. (7)

Thus from (6) and (7) infer the proof of corollary.
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