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Abstract

Spectral density built as Fourier transform of covariance sequence of sta-
tionary random process is determining the process characteristics and makes for
analysis of it’s structure. Thus, one of the main problems in time series analy-
sis is constructing consistent estimates of spectral density via successive, taken
after equal periods of time observations of stationary random process. This ar-
ticle is devoted to investigation of problems dealing with application of wavelet
analysis methods for solving task of spectral density nonparametric estimating
of stationary random process with discrete time.

1 Introduction

Wavelet analysis is a new trend in data processing, which was developed independently
in the fields of mathematics, physics and engineering. Interchanges between these fields
during the last decades have led to many new wavelet applications, in particular, ap-
plications in mathematical statistics. There are few investigations done in the branch
of spectral density estimating of stationary random process via wavelets. The idea
of using periodogram expansion in series via periodic scaling functions and wavelets
for spectral density estimate of one-dimensional stationary random process with dis-
crete time was first suggested in article by M.H. Newmann [3]. In researches of M.H.
Newmann, D.Donoho, I. Jonstone [2] behavior of nonlinear spectral density estimates
constructed via wavelet coefficients thresholding methods is investigated. At the same
time, analysis of statistical properties of linear wavelet estimates of spectral density
and opportunity of their practical application with various wavelets are not adequately
explored.

2 Wavelet spectral density estimates of stationary

random processes with discrete time

Let’s consider the problem of estimating unknown spectral density f(λ), λ ∈ Π =
[−π; π] via T successive observations X(0), X(1), . . . , X(T − 1) of stationary random
process X(t), MX(t) = 0, t ∈ Z, obtained after equal time intervals. For the spectral
density estimate we’ll consider following statistic:
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f̂(λ) =

2J∑
k=1

α̂J,kϕ̃J,k(λ), (1)

α̂J,k =

∫
Π

I
(h)
T (α)ϕ̃J,k(α)dα, (2)

ϕ̃J,k(λ) =
∑
n∈Z

(2π)−1/2ϕJ,k
(
(2π)−1λ+ n

)
, (3)

ϕJ,k(x) = 2J/2ϕ (2Jx− k) , ϕ(x) – scaling function [1,3], J ∈ N, k = 1, 2J ; I
(h)
T (λ) –

modified periodogram

I
(h)
T (λ) =

1

2πH
(T )
2 (0)

∣∣∣∣∣
T−1∑
t=0

hT (t)X(t)e−iλt
∣∣∣∣∣
2

, (4)

H
(T )
2 (λ) =

T−1∑
t=0

(hT (t))2e−iλt, (5)

function hT (t) = h
(
t
T

)
, h : [0, 1] → R – data taper, T ∈ N.

Statistic (1) is called linear wavelet estimate of spectral density. It is proved that
estimate (1) is spectral density estimate of stationary random process consistent in
mean-square sense.

In this article we’ll used Coifman scaling function ϕ(x) ∈ L2(R) of the orderM, M ∈
N which is of real value and has the following properties [1]:

suppϕ(x) ⊂ [−M ; 2M − 1],∫
R

ϕ(x)dx = 1,

∫
R

xmϕ(x)dx = 0,

m = 1,M − 1.
As Coifman scaling function has vanishing moments, coefficients α̂J,k may be ap-

proximated by evaluations of the function I
(h)
T at dyadic points:

α̂J,k ≈ 2π

2J/2
I

(h)
T

(
2πk

2J

)
, (6)

k = 1, 2J , J ∈ N. Taking this fact into consideration, we’ll substitute the coefficients
α̂J,k with the approximations (6) in defining statistic f̂(λ) and shall define statistic

ˆ̂
f(λ) =

√
2π

2
J
2

2J∑
k=1

I
(h)
T

(
2πk

2J

)
ϕ̃J,k (λ) (7)

I
(h)
T (λ), ϕ̃J,k(λ) are defined by (3) and (4) correspondingly J ∈ N, k = 1, 2J .
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3 Statistic behavior of the wavelet estimate (7)

Let us consider the behavior of the moments of suggested estimate (7). For the further
investigation the following definition will be used:

Definition 1. Given M,K and L, let CM(K,L) denote the set of functions f(λ), λ ∈
Π, having M + 1 bounded derivatives:∣∣f (M+1)(λ)

∣∣ ≤ K < ∞

M ∈ N0 and satisfying Lipschitz condition with the constant L (independent of λ).

Theorem 1. Let f(λ) ∈ CM(L,K), λ ∈ Π, data tapers have total variation bounded
by V > 0, Coifman scaling function ϕ(x) of the order M + 1 is absolutely bounded by
the constant A, then the following inequality is valid:∣∣∣Ef̂(λ) −E

ˆ̂
f(λ)

∣∣∣ ≤ RT (M),

RT (M) =

(
2C2

1V
2L

2πH
(T )
2 (0)

[2 ln(πT ) + 1] +
(2π)M+1K(3M + 3)M+2A

(M + 2)!2J(M+1)

)∫
R

|ϕ(y)|dy, (8)

H
(T )
2 (0) is defined by (5), 0 < C1 ≤ π.

Theorem 2. If conditions of Theorem 1 are satisfied, then for the bias of estimator
(7) the following inequality takes place:∣∣∣E ˆ̂

f(λ) − f(λ)
∣∣∣ ≤ C2

1V
2LD

2πH
(T )
2 (0)

[2 ln(πT ) + 1] +

+
6πAL(M + 1)

2J

⎡⎣∫
R

|z| |ϕ(z)| dz + 3(M + 1)

∫
R

|ϕ(z)| dz

⎤⎦+RT (M),

D =
∑
m∈Z

∣∣∣∣ϕ(2Jλ

2π
−m

)∣∣∣∣ ∫
R

|ϕ(y)| dy < +∞,

H
(T )
2 (0) and RT (M) are given by (5) and (8) correspondingly, 0 < C1 ≤ π.

As an rate of convergence for dispersion of estimate (7) one can use relations ob-
tained for dispersion of estimate (1) [3].

It is necessary to emphasize advantages of use of estimations (7). First of all, at
calculation of estimates (7) it is possible to take advantage of algorithm fast Fourier
transform. It will allow to improve speed of calculations, is especial at great values T .
Second, the statistic (7) allows to receive a consistent estimate of spectral density in any
point λ ∈ Π as against similar classical estimates where we have a consistent estimate
of spectral density only in points λk = 2πk

T
, for the integer k, −

[
T
2

]
≤ k ≤

[
T
2

]
,
[
T
2

]
–

the integer part of T
2
.
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4 Example

Let’s consider an autoregressive process of p-th order p ∈ N = {1, 2, ...} :

p∑
j=0

ajXt−j = εt, (a0 = 1), (9)

where εt is a sequence of independent, identically distributed random variates, t ∈ Z =
{0,±1,±2, ...}. We’ll assume that εt ∼ N(0, σ2). For model (9) we can rewrite:

p∑
j=0

ajz
j =

p∏
j=1

(1 − ujz), uj ∈ C.

If uj = θje
−iµj , then at θj → 1 spectral density f(λ), λ ∈ Π of the random process

(9) has peaks on a frequency µj ∈ Π, j = 1, p, p ∈ N. Let’s consider the autoregressive
processes of the 4th order AR(4), where εt ∼ N(0, 1) and

u1 = 0, 9e−i0,8π, u2 = u1, u3 = 0, 9e−i0,12π, u4 = u3.

On figure 1 theoretical spectral density of the considering process and wavelet esti-
mate (6) obtained via Coifman scaling function of 8th order with T = 256 are shown.
Data taper Risse, Bokhner and Parsen’s, h(x) = 1 − x2, x ∈ [−1, 1], is used.

Figure 1: Theoretical spectral density and it’s wavelet estimate for the process AR(4).

Thus, by numerical experiments we provide results which corroborate the theory.
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